Skip to main content
Log in

Simultaneous quantification of amino acids and Amadori products in foods through ion-pairing liquid chromatography–high-resolution mass spectrometry

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The formation of the Amadori products (APs) is the first key step of Maillard reaction. Only few papers have dealt with simultaneous quantitation of amino acids and corresponding APs (1-amino-1-deoxy-2-ketose). Chromatographic separation of APs is affected by several drawbacks mainly related to their poor retention in conventional reversed phase separation. In this paper, a method for the simultaneous quantification of amino acids and their respective APs was developed combining high-resolution mass spectrometry with ion-pairing liquid chromatography. The limit of detection was 0.1 ng/mL for tryptophan, valine and arginine, while the limit of quantification ranged from 2 to 5 ng/mL according to the specific sensitivity of each analyte. The relative standard deviation % was lower than 10 % and the coefficient of correlation was higher than 0.99 for each calibration curve. The method was applied to milk, milk-based products, raw and processed tomato. Among the analyzed products, the most abundant amino acid was glutamic acid (16,646.89 ± 1,385.40 µg/g) and the most abundant AP was fructosyl-arginine in tomato puree (774.82 ± 10.01 µg/g). The easiness of sample preparation coupled to the analytical performances of the proposed method introduced the possibility to use the pattern of free amino acids and corresponding APs in the evaluation of the quality of raw food as well as the extent of thermal treatments in different food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MR:

Maillard reaction

APs:

Amadori products

HRMS:

High-resolution mass spectrometry

NFPA:

Perfluoropentanoic acid

References

  • Abrams A, Lowy PH, Borsook H (1955) Preparation of 1-Amino-1-deoxy-2-ketohexoses from Aldohexoses and α-Amino Acids. I1. J Am Chem Soc 77(18):4794–4796. doi:10.1021/ja01623a030

    Article  CAS  Google Scholar 

  • Agostoni C, Carratù B, Boniglia C, Riva E, Sanzini E (2000) Free amino acid content in standard infant formulas: comparison with human milk. J Am Coll Nutr 19(4):434–438. doi:10.1080/07315724.2000.10718943

    Article  CAS  PubMed  Google Scholar 

  • Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pr 67(1):3–21. doi:10.1016/j.diabres.2004.09.004

    Article  CAS  Google Scholar 

  • Amadori M (1929) The condensation product of glucose and p-anisidine. Atti Reale AccadNazlLincei 9:4

    Google Scholar 

  • Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. The clinical biochemist reviews/Australian Association of Clinical Biochemists 29(Suppl 1):S49–52

    PubMed Central  PubMed  Google Scholar 

  • Arnold U, Ludiwg E, Kuhn R, Moschwitzer U (1994) Analysis of free amino-acids in green coffee beans 1. Determination of amino-acids after precolumn derivatization using 9-fluorenylmethylchloroformate. Z Lebensm Unters For 199(1):22–25. doi:10.1007/Bf01192946

  • Baisier WM, Labuza TP (1992) Maillard browning kinetics in a liquid model system. J Agric Food Chem 40(5):707–713. doi:10.1021/Jf00017a001

    Article  CAS  Google Scholar 

  • Bosch L, Alegria A, Farre R (2006) Application of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B 831(1–2):176–183. doi:10.1016/j.jchromb.2005.12.002

    Article  CAS  Google Scholar 

  • Carli P, Arima S, Fogliano V, Tardella L, Frusciante L, Ercolano MR (2009) Use of network analysis to capture key traits affecting tomato organoleptic quality. J Exp Bot 60(12):3379–3386. doi:10.1093/jxb/erp177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cosmai L, Summo C, Caponio F, Paradiso VM, Gomes T (2013) Influence of the thermal stabilization process on the volatile profile of canned tomato-based food. J Food Sci 78(12):C1865–C1870. doi:10.1111/1750-3841.12296

    Article  CAS  PubMed  Google Scholar 

  • Davidek T, Clety N, Devaud S, Robert F, Blank I (2003) Simultaneous quantitative analysis of Maillard reaction precursors and products by high-performance anion exchange chromatography. J Agric Food Chem 51(25):7259–7265. doi:10.1021/Jf034794n

    Article  CAS  PubMed  Google Scholar 

  • Davidek T, Kraehenbuehl K, Devaud S, Robert F, Blank L (2005) Analysis of Amadori compounds by high-performance cation exchange chromatography coupled to tandem mass spectrometry. Anal Chem 77(1):140–147. doi:10.1021/Ac048925a

    Article  CAS  PubMed  Google Scholar 

  • del Castillo MD, Corzo N, Olano A (1999) Early stages of Maillard reaction in dehydrated orange juice. J Agric Food Chem 47(10):4388–4390

    Article  PubMed  Google Scholar 

  • Delatour T, Hegele J, Parisod V, Richoz J, Maurer S, Steven M, Buetler T (2009) Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. J Chromatogr A 1216(12):2371–2381. doi:10.1016/j.chroma.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625. doi:10.1039/B418288j

    Article  CAS  PubMed  Google Scholar 

  • Eichner KR, Wittmann R M (1990) The Maillard reaction in food processing, human nutrition and physiology. In: Aeschbacher HU, Hurrel RF, Liardon R (eds) Finot PA. Birkhauser Verlag, Basel, Switzerland, pp 63–77

    Google Scholar 

  • Fenaille F, Parisod V, Visani P, Populaire S, Tabet J-C, Guy PA (2006) Modifications of milk constituents during processing: a preliminary benchmarking study. Int Dairy J 16(7):728–739

    Article  CAS  Google Scholar 

  • Ferrer E, Alegria A, Farre R, Abellan P, Romero F (2003) Fluorometric determination of chemically available lysine: adaptation, validation and application to different milk products. Die Nahrung 47(6):403–407. doi:10.1002/food.200390090

    Article  CAS  PubMed  Google Scholar 

  • Finot J PAB, Viani R, Mauron J (1968) Identification of a new lysine derivative obtained upon acid hydrolysis of heated milk. Experientia 24(24):1097–1099

    Article  Google Scholar 

  • Frolov A, Hoffmann R (2008) Separation of Amadori peptides from their unmodified analogs by ion-pairing RP-HPLC with heptafluorobutyric acid as ion-pair reagent. Anal Bioanal Chem 392(6):1209–1214. doi:10.1007/s00216-008-2377-1

    Article  CAS  PubMed  Google Scholar 

  • Frolov A, Hoffmann P, Hoffmann R (2006) Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. J Mass Spectrom 41(11):1459–1469. doi:10.1002/Jms.1117

  • Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79(15):5991–5999. doi:10.1021/Ac070619k

    Article  CAS  PubMed  Google Scholar 

  • Glinsky GV, Mossine VV, Price JE, Bielenberg D, Glinsky VV, Ananthaswamy HN, Feather MS (1996) Inhibition of colony formation in agarose of metastatic human breast carcinoma and melanoma cells by synthetic glycoamine analogs. Clin Exp Metastasis 14(3):253–267

    CAS  PubMed  Google Scholar 

  • Gokmen V, Serpen A, Mogol BA (2012) Rapid determination of amino acids in foods by hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 403(10):2915–2922. doi:10.1007/s00216-012-5779-z

    Article  PubMed  Google Scholar 

  • GonzalezCastro MJ, LopezHernandez J, SimalLozano J, OrunaConcha MJ (1997) Determination of amino acids in green beans by derivatization with phenylisothiocyanate and high-performance liquid chromatography with ultraviolet detection. J Chromatogr Sci 35(4):181–185

    Article  CAS  Google Scholar 

  • Gritti F, Leonardis I, Abia J, Guiochon G (2010) Physical properties and structure of fine core-shell particles used as packing materials for chromatography Relationships between particle characteristics and column performance. J Chromatogr A 1217(24):3819–3843. doi:10.1016/j.chroma.2010.04.026

    Article  CAS  PubMed  Google Scholar 

  • Han J, Danell RM, Patel JR, Gumerov DR, Scarlett CO, Speir JP, Parker CE, Rusyn I, Zeisel S, Borchers CH (2008) Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics 4(2):128–140. doi:10.1007/s11306-008-0104-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao Z, Lu CY, Xiao B, Weng N, Parker B, Knapp M, Ho CT (2007) Separation of amino acids, peptides and corresponding Amadori compounds on a silica column at elevated temperature. J Chromatogr A 1147(2):165–171. doi:10.1016/j.chroma.2007.02.057

    Article  CAS  PubMed  Google Scholar 

  • Hegele J, Buetler T, Delatour T (2008) Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Anal Chim Acta 617(1–2):85–96. doi:10.1016/j.aca.2007.12.027

    Article  CAS  PubMed  Google Scholar 

  • Henle T, Zehetner G, Klostermeyer H (1995) Fast and sensitive determination of furosine. Z Lebensm Unters For 200(3):235–237. doi:10.1007/Bf01190503

    Article  CAS  Google Scholar 

  • Hodge JE (1953) Dehydrated foods, chemistry of browning reactions in model systems. J Agr Food Chem 1(15):928–943. doi:10.1021/jf60015a004

    Article  CAS  Google Scholar 

  • Horvat S, Jakas A (2004) Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 10(3):119–137. doi:10.1002/Psc.519

    Article  CAS  PubMed  Google Scholar 

  • Hunt S (1985) Degradation of amino acids accompanying in vitro protein hydrolysis. In: Barrett GC (ed) Chemistry and biochemistry of the amino acids. Springer, Netherlands, pp 376–398. doi:10.1007/978-94-009-4832-7_12

  • Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2009) Advances in amino acid analysis. Anal Bioanal Chem 393(2):445–452. doi:10.1007/s00216-008-2421-1

    Article  CAS  PubMed  Google Scholar 

  • Keller BO, Sui J, Young AB, Whittal RM (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627(1):71–81. doi:10.1016/j.aca.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  • Kirschner DL, Green TK (2009) Separation and sensitive detection of d-amino acids in biological matrices. J Sep Sci 32(13):2305–2318. doi:10.1002/jssc.200900101

    Article  CAS  PubMed  Google Scholar 

  • Langrock T, Czihal P, Hoffmann R (2006) Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids 30(3):291–297. doi:10.1007/s00726-005-0300-z

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Man Y, Zhu YC, Hu XS, Chen F (2013) Simultaneous analysis of acrylamide and its key precursors, intermediates, and products in model systems by liquid chromatography-triple quadrupole mass spectrometry. Anal Chem 85(19):9262–9271. doi:10.1021/Ac4019928

    Article  CAS  PubMed  Google Scholar 

  • Meitinger M, Hartmann S, Schieberle P (2014) Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods. J Agric Food Chem 62(22):5020–5027

  • Meltretter J, Birlouez-Aragon I, Becker CM, Pischetsrieder M (2009) Assessment of heat treatment of dairy products by MALDI-TOF-MS. Mol Nutr Food Res 53(12):1487–1495. doi:10.1002/mnfr.200900008

    Article  CAS  PubMed  Google Scholar 

  • Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Muller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. MCP 11(3):O111 013698. doi:10.1074/mcp.O111.013698

  • Molero-Vilchez MDW (1997) A new approach to study the significance of Amadori compounds in the Maillard reaction. Food Chem 58(3):249–254

    Article  CAS  Google Scholar 

  • Morgan F, Bouhallab S, Molle D, Henry G, Maubois JL, Leonil J (1998) Lactolation of beta-lactoglobulin monitored by electrospray ionisation mass spectrometry. Int Dairy J 8(2):95–98. doi:10.1016/S0958-6946(98)00025-9 

  • Mossine VV, Mawhinney TP (2007) N-alpha-(1-DeOXY-d-fructos-1-yl)-l-histidine (“d-fructos-l-histidine”): a potent copper chelator from tomato powder. J Agric Food Chem 55(25):10373–10381. doi:10.1021/Jf072092i

    Article  CAS  PubMed  Google Scholar 

  • Mossine VV, Mawhinney TP (2010) 1-Amino-1-deoxy-d-fructos (“fructosamine”) and its derivatives. Adv Carbohydr Chem Biochem 64:291–402

    Article  CAS  PubMed  Google Scholar 

  • Newton AE, Fairbanks AJ, Golding M, Andrewes P, Gerrard JA (2012) The role of the Maillard reaction in the formation of flavour compounds in dairy products—not only a deleterious reaction but also a rich source of flavour compounds. Food Funct 3(12):1231–1241. doi:10.1039/C2fo30089c

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Van Der Fels-Klerx H, Van Boekel M (2014) Nϵ-(carboxymethyl) lysine: a review on analytical methods, formation and occurrence in processed food, and health impact. Food Rev Int (just-accepted)

  • Nordin P, Kim YS (1958) Browning reactions, browning and the Amadori rearrangement. J Agric Food Chem 6(10):765–766. doi:10.1021/jf60092a007

    Article  CAS  Google Scholar 

  • Odriozola-Serrano I, Garde-Cerdán T, Soliva-Fortuny R, Martín-Belloso O (2013) Differences in free amino acid profile of non-thermally treated tomato and strawberry juices. J Food Compos Anal 32(1):51–58

    Article  CAS  Google Scholar 

  • Ozcan S, Senyuva HZ (2006) Improved and simplified liquid chromatography/atmospheric pressure chemical ionization mass spectrometry method for the analysis of underivatized free amino acids in various foods. J Chromatogr A 1135(2):179–185. doi:10.1016/j.chroma.2006.09.039

    Article  PubMed  Google Scholar 

  • Petritis K, Chaimbault P, Elfakir C, Dreux M (2000) Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry. J Chromatogr A 896(1–2):253–263. doi:10.1016/S0021-9673(00)00582-3

    Article  CAS  PubMed  Google Scholar 

  • Petritis K, Elfakir C, Dreux M (2002) A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J Chromatogr A 961(1):9–21 10.1016/S0021-9673(02)00377-1

    Article  CAS  PubMed  Google Scholar 

  • Pischetsrieder M, Henle T (2012) Glycation products in infant formulas: chemical, analytical and physiological aspects. Amino Acids 42(4):1111–1118. doi:10.1007/s00726-010-0775-0

    Article  CAS  PubMed  Google Scholar 

  • Rao QC, Rocca-Smith JR, Schoenfuss TC, Labuza TP (2012) Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder. Food Chem 135(2):464–472. doi:10.1016/j.foodchem.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  • Reutter M, Eichner K (1989) Separation and determination of Amadori compounds by high-pressure liquid-chromatography and post-column reaction. Z Lebensm Unters For 188(1):28–35. doi:10.1007/Bf01027618

    Article  CAS  Google Scholar 

  • Sanz ML, del Castillo MD, Corzo N, Olano A (2000) Presence of 2-furoylmethyl derivatives in hydrolysates of processed tomato products. J Agric Food Chem 48(2):468–471. doi:10.1021/Jf990697b

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, del Castillo MD, Corzo N, Olano A (2001) Formation of Amadori compounds in dehydrated fruits. J Agric Food Chem 49(11):5228–5231. doi:10.1021/Jf010580z

    Article  CAS  PubMed  Google Scholar 

  • Schlichtherle-Cerny H, Affolter M, Cerny C (2003) Hydrophilic interaction liquid chromatography coupled to electrospray mass spectrometry of small polar compounds in food analysis. Anal Chem 75(10):2349–2354. doi:10.1021/Ac026613p

    Article  CAS  PubMed  Google Scholar 

  • Silván JM, van de Lagemaat J, Olano A, del Castillo MD (2006) Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J Pharm Biomed Anal 41(5):1543–1551

    Article  PubMed  Google Scholar 

  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146. doi:10.1007/s001250051591

    Article  CAS  PubMed  Google Scholar 

  • Srinivas SM, Harohally NV (2012) Improved synthesis of lysine- and arginine-derived amadori and Heyns products and in vitro measurement of their angiotensin i-converting enzyme inhibitory activity. J Agric Food Chem 60(6):1522–1527. doi:10.1021/Jf204185y

    Article  CAS  PubMed  Google Scholar 

  • Staempfli AA, Blank I, Fumeaux R, Fay LB (1994) Study on the decomposition of the Amadori compound N-(1-deoxy-d-fructos-1-y1)-glycine in model systems: quantification by fast atom bombardment tandem mass spectrometry. Biol Mass Spectrom 23(10):642–646. doi:10.1002/bms.1200231007

    Article  CAS  Google Scholar 

  • Troise AD, Fiore A, Fogliano V (2013) Quantitation of Acrylamide in foods by high-resolution mass spectrometry. J Agric Food Chem. doi:10.1021/jf404205b

    Google Scholar 

  • Troise AD, Ferracane R, Palermo M, Fogliano V (2014) Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: the “FancyTiles” approach. Food Res Int

  • van Boekel MAJS (2006) Formation of flavour compounds in the Maillard reaction. Biotechnol Adv 24(2):230–233. doi:10.1016/j.biotechadv.2005.11.004

    Article  PubMed  Google Scholar 

  • Ventura AK, San Gabriel A, Hirota M, Mennella JA (2012) Free amino acid content in infant formulas. Nutr Food Sci 42(4):271–278

    Article  Google Scholar 

  • Vinale F, Fogliano V, Schieberle P, Hofmann T (1999) Development of a stable isotope dilution assay for an accurate quantification of protein-bound N-epsilon-(1-deoxy-d-fructos-1-yl)-l-lysine using a C-13-labeled internal standard. J Agric Food Chem 47(12):5084–5092. doi:10.1021/Jf9904315

    Article  CAS  PubMed  Google Scholar 

  • Wnorowski A, Yaylayan VA (2000) Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products. J Agric Food Chem 48(8):3549–3554. doi:10.1021/jf9913099

    Article  CAS  PubMed  Google Scholar 

  • Wrodnigg TM, Eder B (2001) The Amadori and Heyns rearrangements: landmarks in the history of carbohydrate chemistry or unrecognized synthetic opportunities? Top Curr Chem 215:115–152

    Article  CAS  Google Scholar 

  • Yang WC, Mirzaei H, Liu XP, Regnier FE (2006) Enhancement of amino acid detection and quantification by electrospray ionization mass spectrometry. Anal Chem 78(13):4702–4708. doi:10.1021/Ac0600510

    Article  CAS  PubMed  Google Scholar 

  • Yaylayan VA, Huyghuesdespointes A (1994) Chemistry of Amadori rearrangement products—analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit Rev Food Sci 34(4):321–369

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Dario Troise.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troise, A.D., Fiore, A., Roviello, G. et al. Simultaneous quantification of amino acids and Amadori products in foods through ion-pairing liquid chromatography–high-resolution mass spectrometry. Amino Acids 47, 111–124 (2015). https://doi.org/10.1007/s00726-014-1845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1845-5

Keywords

Navigation