Skip to main content
Log in

Structure of the cyclic peptide [W8S]contryphan Vn: effect of the tryptophan/serine substitution on transcis proline isomerization

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The structural characterization of [W8S]contryphan Vn, an analogue of Contryphan Vn with tryptophan 8 substituted with a serine residue (W8S), was performed by NMR spectroscopy, molecular dynamics simulations and fluorescence spectroscopy. Contryphan Vn, a bioactive cyclic peptide from the venom of the cone snail Conus ventricosus, contains an S–S bridge between two cysteines and a d-tryptophan. Like other Contryphans, [W8S]contryphan Vn has proline 7 isomerized trans, while the proline 4 has nearly equivalent populations of cis and trans configurations. The thermodynamic and kinetic parameters of the transcis isomerization of proline 4 were measured. The isomers of [W8S]contryphan Vn with proline 4 in cis and trans show structural differences. The absence of the salt bridge between the same Asp2 and Lys6, present in Contryphan Vn, may be attributed to the lack of the hydrophobic side chain of Trp8 where it likely protects the electrostatic interactions. These results may contribute to identifying, in these cyclic peptides, the structural determinants of the mechanism of proline transcis isomerization, this being also an important step in protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

TFA:

Trifluoroacetic acid

HMQC:

Heteronuclear multiple quantum coherence

HSQC:

Heteronuclear single quantum coherence

ROESY:

Rotating-frame Overhauser spectroscopy

TOCSY:

Total correlation spectroscopy

DOSY:

Diffusion-ordered spectroscopy

TFE:

Trifluoroethanol

PME:

Particle-mesh Ewald method

TSP:

Trimethylsilyl propionic acid

References

  • Adams PD, Chen Y, Ma K, Zagorski MG, Sonnichsen FD, McLaughlin ML, Barkley MD (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc 124:9278–9286

    Article  CAS  PubMed  Google Scholar 

  • Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42:9515–9524

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Davis DG (1985) Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson 63:207–213

    CAS  Google Scholar 

  • Bax A, Freeman R (1981) Bidimensional NMR spectroscopy. J Magn Reson 44:542

    CAS  Google Scholar 

  • Bax A, Griffey RH, Hawkins BL (1983) Sensitivity-enhanced correlation of 15 N and 1H chemical shifts in natural-abundance samples via multiple quantum coherence. J Am Chem Soc 105:7188–7190

    Article  CAS  Google Scholar 

  • Baxter NJ, Williamson MP (1997) Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR 9:359–369

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen G, Reuben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  CAS  Google Scholar 

  • Bothner-By AA, Stephens RL, Lee J, Warren CD, Jeanloz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106:811–813

    Article  CAS  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528

    CAS  Google Scholar 

  • Brunger AT (1993) XPLOR manual version 3.1. Yale University Press, New Haven

  • Buevich AV, Dai QH, Liu X, Brodsky B, Baum J (2000) Site-specific NMR monitoring of cis-trans isomerization in the folding of the proline-rich collagen triple helix. Biochemistry 39:4299–4308

    Article  CAS  PubMed  Google Scholar 

  • Cheng HN, Bovey FA (1977) Cis–trans equilibrium and kinetic studies of acetyl-l-proline and glycyl-l-proline. Biopolymers 16:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Merz KM Jr (1996) Application of the Nosé–Hoover chain algorithm to the study of protein dynamics. J Phys Chem 100:1927–1937

    Article  CAS  Google Scholar 

  • Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21:249–261

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Avram L, Frish L (2005) Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter new insights. Angew Chem 44:520–554

    Article  CAS  Google Scholar 

  • D’Alessandro M, Paci M, Amadei A (2004) Characterization of the conformational behavior of peptide Contryphan Vn: a theoretical study. Biopolymers 74:448–456

    Article  PubMed  Google Scholar 

  • Deber CM, Bovey FA, Carver JP, Blout ER (1970) Nuclear magnetic resonance evidence for cis-peptide bonds in proline oligomers. J Am Chem Soc 92:6191–6198

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comp Chem 24:1999–2012

    Article  CAS  Google Scholar 

  • Eliseo T, Cicero DO, Romeo C, Schininà ME, Massilia GR, Polticelli F, Ascenzi P, Paci M (2004) Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+ channel modulator. Biopolymers 74:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  • Fischer G (2000) Chemical aspects of peptide bond isomerisation. Chem Soc Rev 29:119–127

    Article  CAS  Google Scholar 

  • Floquet S, Brun S, Lemonnier JF, Henry M, Delsuc MA, Prigent Y, Cadot E, Taulelle F (2009) Molecular weights of cyclic and 273 hollow clusters measured by DOSY NMR spectroscopy. J Am Chem Soc 131:17254–17259

    Article  CAS  PubMed  Google Scholar 

  • Gesquiere JC, Diesis E, Cung MT, Tartar A (1989) Slow isomerization of some proline-containing peptides inducing peak splitting during reversed-phase high-performance liquid chromatography. J Chromatogr 478:121–129

    Article  CAS  Google Scholar 

  • Grant MA, Hansson K, Furie BC, Furie B, Stenflo J, Rigby AC (2004) The metal-free and calcium-bound structures of a gamma-carboxyglutamic acid-containing contryphan from Conus marmoreus, glacontryphan. J Biol Chem 279:32464–32473

    Article  CAS  PubMed  Google Scholar 

  • Grathwohl C, Wuthrich K (1976) NMR studies of the molecular conformations in the linear oligopeptides H-(l-Ala)n-l-Pro-OH. Biopolymers 15:2043–2057

    Article  CAS  PubMed  Google Scholar 

  • Grzesiek S, Bax A (1992) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  CAS  Google Scholar 

  • Hansson K, Ma X, Eliasson L, Czerwiec E, Furie B, Furie BC, Rorsman P, Stenflo J (2004) The first gamma-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from the venom of Conus marmoreus. J Biol Chem 279:32453–32463

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hinck AP, Eberhardt ES, Markley JL (1993) NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline. Biochemistry 117:11810–11818

    Article  Google Scholar 

  • Jacobsen RB, Jimenez EC, Grilley M, Watkins M, Hillyard D, Cruz LJ, Olivera BM (1998) The contryphans, a d-tryptophan-containing family of Conus peptides: interconversion between conformers. J Pept Res 51:173–179

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen RB, Jimenez EC, De la Cruz RG, Gray WR, Cruz LJ, Olivera BM (1999) A novel d-leucine-containing Conus peptide: diverse conformational dynamics in the contryphan family. J Pept Res 54:93–99

    Article  CAS  PubMed  Google Scholar 

  • Jardetzsky O, Roberts GCK (1981) NMR in molecular biology. Academic Press, New York

    Google Scholar 

  • Jimenez EC, Olivera BM, Gray WR, Cruz LJ (1996) Contryphan is a d-tryptophan-containing Conus peptide. J Biol Chem 271:28002–28005

    Article  CAS  PubMed  Google Scholar 

  • Jimenez EC, Craig AG, Watkins M, Hillyard DR, Gray WR, Gulyas J, Rivier JE, Cruz LJ, Olivera BM (1997) Bromocontryphan: post-translational bromination of tryptophan. Biochemistry 36:989–994

    Article  CAS  PubMed  Google Scholar 

  • Jimenez EC, Watkins M, Juszczak LJ, Cruz LJ, Olivera BM (2001) Contryphans from Conus textile venom ducts. Toxicon 39:803–808

    Article  CAS  PubMed  Google Scholar 

  • Jimenez EC, Olivera BM, Gray WR, Cruz L (2002) Patent No.: US 6.411.132 B1

  • Juvvadi P, Dooley DJ, Humblet CC, Lu GH, Lunney EA, Panek RL, Skeean R, Marshall GR (1992) Bradykinin and angiotensin II analogs containing a conformationally constrained proline analog. Int J Pept Protein Res 40:163–170

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Li D, Keresztes I, Hopson R, Williard PG (2009) Characterization of reactive intermediate s by multinuclear diffusion-ordered NMR spectroscopy (DOSY). Acc Chem Res 42:270–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of (1)H-(1)H spin-spin coupling constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  CAS  PubMed  Google Scholar 

  • Massilia GR, Schinina ME, Ascenzi P, Polticelli F (2001) Contryphan-Vn: a novel peptide from the venom of the Mediterranean snail Conus ventricosus. Biochem Biophys Res Commun 288:908–913

    Article  CAS  PubMed  Google Scholar 

  • Massilia GR, Eliseo T, Grolleau F, Lapied B, Barbier J, Bournaud R, Molgo J, Cicero DO, Paci M, Schinina ME, Ascenzi P, Polticelli F (2003) Contryphan-Vn: a modulator of Ca2+-dependent K+ channels. Biochem Biophys Res Commun 303:238–246

    Article  PubMed  Google Scholar 

  • Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, de Santos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Omichinski JG, Pedone PV, Felsenfeld G, Clore GM (1997) The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol 4:122–132

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Norton RS (2000) The cyclic contryphan motif CPxXPXC, a robust scaffold potentially useful as an omega-conotoxin mimic. Biopolymers 54:173–179

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Melnikova AP, Jimenez EC, Olivera BM, Norton RS (1999) Solution structure of contryphan-R, a naturally occurring disulfide-bridged octapeptide containing d-tryptophan: comparison with protein loops. Biochemistry 38:11553–11559

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, He W, Jimenez EC, Olivera BM, Norton RS (2000) Structures of the contryphan family of cyclic peptides. Role of electrostatic interactions in cis–trans isomerism. Biochemistry 39:12845–12852

    Article  CAS  PubMed  Google Scholar 

  • Pardi A, Billeter M, Wuthrich K (1984) Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol 180:741–751

    Article  CAS  PubMed  Google Scholar 

  • Rabenstein DL, Shi T, Spain S (2000) Intramolecular catalysis of the cis–trans isomerization of proline peptide bonds in cyclic disulfide-containing peptides. J Am Chem Soc 122:2401–2402

    Article  CAS  Google Scholar 

  • Reimer U, Mokdad NE, Schutkowsky M, Fisher G (1997) Intramolecular assistance of cis/trans isomerization of the histidine–proline moiety. Biochemistry 36:13802–13808

    Article  CAS  PubMed  Google Scholar 

  • Riddles PW, Blakeley RL, Zerner B (1979) Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)––a reexamination. Anal Biochem 94:75–81

    Article  CAS  PubMed  Google Scholar 

  • Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60

    Article  CAS  PubMed  Google Scholar 

  • Sabareesh V, Gowd KH, Ramasamy P, Sudarslal S, Krishnan KS, Sikdar SK, Balaram P (2006) Characterization of contryphans from Conus loroisii and Conus amadis that target calcium channels. Peptides 27:2647–2654

    Article  CAS  PubMed  Google Scholar 

  • Schimmel PR, Flory PJ (1967) Conformational energy and configurational statistics of poly-l-proline. Proc Natl Acad Sci USA 58:52–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid FX, Baldwin RL (1978) Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc Natl Acad Sci USA 75:4764–4768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi T, Spain SM, Rabenstein DL (2004) Unexpectedly fast cis/trans isomerization of Xaa-Pro peptide bonds in disulfide-constrained cyclic peptides. J Am Chem Soc 126:790–796

    Article  CAS  PubMed  Google Scholar 

  • Stein RL (1993) Mechanism of enzymatic and nonenzymatic prolyl cis–trans isomerization. Adv Protein Chem 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Troganis A, Gerothanassis IP, Athanassiou Z, Mavromoustakos T, Hawkes GE, Sakarellos C (2000) Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study. Biopolymers 53:72–83

    Article  CAS  PubMed  Google Scholar 

  • Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis–trans isomerization and protein folding. Biochemistry 41:14637–14644

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. J Mol Biol 222:311–333

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. John Wiley & Sons Inc, New York

    Google Scholar 

  • Yaron A, Naider F (1993) Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 28:31–81

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa Y, Nakata K, Sakakura K, Takada T, Nakamura H (2009) Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water. J Am Chem Soc 131:4535–4540

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Mr. Fabio Bertocchi is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Paci.

Additional information

R. Nepravishta and W. Mandaliti have equally contributed to this work.

Electronic supplementary material

Supplementary Table 1. Assignment of the NMR resonances of [W8S]contryphan Vn spectra. The chemical shift values of 1H, 15N, and 13C resonances are reported. Labels A and B indicate the resonances due to the isomers of Proline 4 cis and trans, respectively.

Supplementary Table 2a and b. NMR Structural Statistics from XPLOR. Family of 20 Structures for cis-[W8S]contryphan Vn a) and family of 20 Structures trans-[W8S]contryphan Vn b).

Supplementary Fig. 1. Heteronuclear 1H-13C HSQC NMR spectrum of [W8S]contryphan Vn. In figure, some of 13C resonances assigned are shown. The complete list of assignments is reported in Supplementary Table 1.

Supplementary Fig. 2. DOSY NMR of [W8S]contryphan Vn in H2O/D2O 90/10 (v/v) at pH 3.0.

Supplementary Fig. 3a. Comparison between phi angles of cis-[W8S]contryphan Vn (black) and trans-[W8S]contryphan Vn (gray).

Supplementary Fig. 3b. Comparison between psi angles of cis-[W8S]contryphan Vn (black) and trans-[W8S]contryphan Vn (gray).

Supplementary Fig. 3c. Comparison between phi angles of Contryphan Vn (black) and cis-[W8S]contryphan Vn (gray).

Supplementary Fig. 3d. Comparison between psi angles of Contryphan Vn (black) and cis-[W8S]contryphan Vn (gray).

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 kb)

Supplementary material 2 (PDF 128 kb)

Supplementary material 3 (PDF 104 kb)

Supplementary material 4 (PDF 101 kb)

Supplementary material 5 (PDF 102 kb)

Supplementary material 6 (PDF 101 kb)

Supplementary material 7 (PDF 153 kb)

Supplementary material 8 (PDF 84 kb)

Supplementary material 9 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepravishta, R., Mandaliti, W., Melino, S. et al. Structure of the cyclic peptide [W8S]contryphan Vn: effect of the tryptophan/serine substitution on transcis proline isomerization. Amino Acids 46, 2841–2853 (2014). https://doi.org/10.1007/s00726-014-1841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1841-9

Keywords

Navigation