Skip to main content

Advertisement

Log in

l-Arginine and its metabolites in kidney and cardiovascular disease

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. l-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an l-arginine impaired levels and/or to its metabolites: in particular various l-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. l-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating l-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of l-arg metabolites in cardiovascular disease and that l-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains l-arginine metabolites and l-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiello S, Noris M, Todesehini M et al (1997) Renal and systemic NO synthesis in rats with renal mass reduction. Kidney Int 52:171–181

    PubMed  CAS  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthase: structure, function and inhibition. Biochem J 357:593–615

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anderssohn M, Schwedhelm E, Lüneburg N, Vasan RS, Böger RH (2010) Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus. Diab Vasc Dis Res 7(2):105–118

    PubMed  Google Scholar 

  • Anderstam B, Katzarski K, Bergstrom J (1997) Serum levels of NG, NG-dimethyl-l-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J Am Soc Nephrol 8:1437–1442

    PubMed  CAS  Google Scholar 

  • Asaka M, Iida H, Izumino K, Sasayama S (1988) Depressed natural killer cell activity in uremia. Nephron 49:291–295

    PubMed  CAS  Google Scholar 

  • Ataya B, Tzeng E, Zuckerbraun BR (2011) Nitrite-generated Nitric oxide to protect against intimal hyperplasia formation. Trends Cardiovasc 21:157–162

    CAS  Google Scholar 

  • Autore G, Marzocco S, Sorrentino R, Mirone VG, Baydoun A, Pinto A (1999) In vitro and in vivo TNFalpha synthesis modulation by methylguanidine, an uremic catabolyte. Life Sci 65(11):PL121–PL127

    PubMed  CAS  Google Scholar 

  • Bagdade JD, Subbaiah PV, Bartos D, Bartos F, Campbell RA (1979) Polyamines: an unrecognised cardiovascularrisk factor in chronic dialysis? Lancet 1:412–413

    PubMed  CAS  Google Scholar 

  • Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease (CKD). Nature Clinical Practice Nephrology 2:209–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baylis C (2008) Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol 294:F1–F9

    PubMed  CAS  Google Scholar 

  • Bellinghieri G, Santoro D, Mallamace A, Savica V (2006) l-arginine: a new opportunity in the management of clinical derangement in dialysis patients. J Renal Nutr 16:245–247

    Google Scholar 

  • Beltowski J, Kedra A (2006) Asymmetric dimethyl arginine (ADMA) as a target for pharmacotherapy. Pharmacol Rep 58:159–178

    PubMed  CAS  Google Scholar 

  • Betz B, Möller-Ehrlich K, Kress T, Kniepert J, Schwedhelm E, Böger RH, Wanner C, Sauvant C, Schneider R (2013) Increased symmetrical dimethylarginine in ischemic acute kidney injury as a causative factor of renal l-arginine deficiency. Transl Res 162(2):67–76

    PubMed  CAS  Google Scholar 

  • Blantz RC, Satriano J, Gabbai F, Kelly C (2000) Biological effects of arginine metabolites. Acta Physiol Scand 168(1):21–25

    PubMed  CAS  Google Scholar 

  • Bodamer OA, Sahoo T, Beaudet AL, O’Brien WE, Bottiglieri T, Stockler-Ipsiroglu S, Wagner C, Scaglia F (2005) Creatine metabolism in combined methylmalonic aciduria and homocystinuria. Ann. Neurol 57:557–560

    PubMed  CAS  Google Scholar 

  • Böger RH, Ron ES (2005) l-arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev 10(1):14–23

    PubMed  Google Scholar 

  • Böger RH, Maas R, Schulze F, Schwedhelm E (2009) Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality-an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 60:481–487

    PubMed  Google Scholar 

  • Boudy N, Hassler C, Parvy P, Bankir L (1993) Renal synthesis of arginine in CRF; In vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney Int 44:676–683

    Google Scholar 

  • Caglar K, Yilmaz MI, Sonmez A, Cakir E, Kaya A, Acikel C, Eyileten T, Yenicesu M, Oguz Y, Bilgi C et al (2006) ADMA, proteinuria, and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int 70:781–787

    PubMed  CAS  Google Scholar 

  • Caldarera CM, Casti A, Rossoni C, Visioli O (1971) Polyamines and noradrenaline following myocardial hypertrophy. J Mol Cell Cardiol 3(1):121–126

    PubMed  CAS  Google Scholar 

  • Caldarera CM, Casti A, Guarnier C, Moruzzi G (1975) Regulation of ribonucleic acid synthesis by polyamines. Reversal by spermine of inhibition by methylglyoxal bis(guanylhydrazone) of ribonucleic acid synthesis and histone acetylation in rabbit heart. Biochem J 152(1):91–98

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campbell RA (1987) Polyamines and uremia. Adv Exp Med Biol 223:47–54

    PubMed  CAS  Google Scholar 

  • Carlström M, Persson AE, Larsson E et al (2011) Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 89:574–585

    PubMed  Google Scholar 

  • Castillo L, Sanchez M, Vogt J, Chapman TE, DeRojas-Walker TC, Tannenbaum SR, Ajami AM, Young VR (1995) Plasma arginine, citrulline, and ornithine kinetics in adults, with observations on nitric oxide synthesis. Am J Physiol 268:E360–E367

    PubMed  CAS  Google Scholar 

  • Chan W, Wang M, Kopple J, Swenseid M (1974) Citrulline levels and urea cycle enzymes in uremic rats. J Nutr 104:678–683

    PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NS, Kvale EO, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Thiemermann C (2002) Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int 61:862–871

    PubMed  CAS  Google Scholar 

  • Cherla G, Jaimes EA (2004) Role of l-arginine in the pathogenesis and treatment of renal disease arginine metabolism: enzymology, nutrition, and clinical significance. J Nutr 134:2801S–2806S

    PubMed  CAS  Google Scholar 

  • Clarkson P, Adams MR, Powe AJ et al (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conference D (1987) Oxygen radicals and human disease. Ann Int Med 107:526–545

    Google Scholar 

  • Conger JD, Robinette JB, Schrier RW (1988) Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest 82:532–537

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conger J, Robinette J, Villar A, Raij L, Shultz P (1995) Increased nitric oxide synthase activity despite lack of response to endothelium dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest 96:631–638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cubría JC, Reguera R, Balaña-Fouce R, Ordóñez C, Ordóñez D (1998) Polyamine-mediated heart hypertrophy induced by clenbuterol in the mouse. J Pharm Pharmacol 50(1):91–96

    PubMed  Google Scholar 

  • D’Hooge R, Pei YQ, Marescau B, De Deyn PP (1992) Convulsive action and toxicity of uremic guanidino compounds: behavioral assessment and relation to brain concentration in adult mice. J Neurol Sci 112:96–105

    PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP, Van De Vijver G et al (1999) Uraemic guanidine compounds inhibit gamma-aminobutyric acid-evoked whole cell currents in mouse spinal cord neurones. Neurosci Lett 265:83–86

    PubMed  Google Scholar 

  • Davis TA, Nguyen HV, Garciaa-Bravo R et al (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    PubMed  CAS  Google Scholar 

  • De Deyn PP, MacDonald RL (1990) Guanidino compounds that are increased in uremia inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol 28:627–633

    PubMed  Google Scholar 

  • De Deyn P, Marescau B, Lornoy W et al (1986) Guanidino compounds in uraemic dialysed patients. Clin Chim Acta 157:143–150

    PubMed  Google Scholar 

  • De Deyn P, Marescau B, Lornoy W et al (1987) Serum guanidino compound levels and the influence of a single hemodialysis in uremic patients undergoing maintenance hemodialysis. Nephron 45:291–295

    PubMed  Google Scholar 

  • De Deyn PP, Vanholder R, D’Hooge R (2003) Nitric oxide in uremia: effects of several potentially toxic guanidino compounds. Kidney Int Suppl 84:S25–S28

    PubMed  Google Scholar 

  • Durante W, Johnson FK, Johnson RA (2007) Arginase: a critical regulator of nitric oxide synthesis and vascular function. ClinExp Pharmacol 34:906–911

    CAS  Google Scholar 

  • El-Mesallamy HO, Abdel Hamid SG, Gad MZ (2008) Oxidative stress and asymmetric dimethylarginine are associated with cardiovascular complications in hemodialysis patients: improvements by l-arginine intake. Kidney Blood Press Res 31:189–195

    PubMed  CAS  Google Scholar 

  • Eloot S, Schepers E, Barreto DV, Barreto FC, Liabeuf S, Van Biesen W et al (2011) Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. Clin J Am Soc Nephrol 6:1266–1273

    PubMed  PubMed Central  Google Scholar 

  • Forslund T, Nilsson HM, Sundqvist T (2000) Nitric oxide regulates the aggregation of stimulated human neutrophils. Biochem Biophys Res Commun 274(2):482–487

    PubMed  CAS  Google Scholar 

  • Fujii H, Kono K, Nakai K, Goto S, Kitazawa R, Fukagawa M, Nishi S (2014) Renin-angiotensin system inhibitors reduce serum asymmetric dimethylarginine levels and oxidative stress in normotensive patients with chronic kidney disease. Nephron Extra 4:18–25

    PubMed  PubMed Central  Google Scholar 

  • Fukunaga Y, Itoh H, Doi K, Tanaka T, Yamashita J, Chun TH, Inoue M, Masatsugu K, Sawada N, Saito T, Hosoda K, Kook H, Ueda M, Nakao K (2001) Thiazolidinediones, peroxisome proliferator-activated receptor gamma agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 158(1):113–119

    PubMed  CAS  Google Scholar 

  • Gilchrist M, Shore AC, Benjamin N (2011) Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc Res 89:492–498

    PubMed  CAS  Google Scholar 

  • Giovannetti S, Cioni L, Balestri PL, Biagnini M (1968) Evidence that guanidines and some related compounds cause haemolysis in chronic uraemia. Clin Sci 34:141–148

    PubMed  CAS  Google Scholar 

  • Giovannetti S, Biagnini M, Balestri PL et al (1969) Uraemia-like sindrome in dogs chronically intoxicated with methylguanidine and creatinine. Clin Sci 36:445–452

    PubMed  CAS  Google Scholar 

  • Glorieux G, Dhondt A, Jacobs P et al (2004) In vitro study of the potential role of guanidines in leukocyte functions related to atherogenesis and infection. Kidney Int 65:1–9

    Google Scholar 

  • Goligorsky MS, Noiri E (1999) Duality of nitric oxide in acute renal injury. Semin Nephrol 19:263–271

    PubMed  CAS  Google Scholar 

  • Goligorsky MS, Brodsky SV, Noiri E (2002) Nitric oxide in acute renal failure: NOS versus NOS. Kidney Int 61(3):855–861

    PubMed  CAS  Google Scholar 

  • Govoni M, Bonavita F, Shantz LM, Guarnieri C, Giordano E (2010) Overexpression of ornithine decarboxylase increases myogenic potential of H9c2 rat myoblasts. Amino Acids 38(2):541–547

    PubMed  CAS  Google Scholar 

  • Greenberg S, Finkelstein A, Gurevich J, Brazowski E, Rosenfeld F, Shapira II, George J, Laniado S, Keren G (1999) The Effect of agmatine on ischemic and nonischemic isolated rat heart. J Cardiovasc Pharmacol Ther 4(3):151–158

    PubMed  CAS  Google Scholar 

  • Greenberg S, George J, Wollman Y, Shapira I, Laniado S, Keren G (2001) The effect of agmatine administration on ischemic-reperfused isolated rat heart. J Cardiovasc Pharmacol Ther 6(1):37–45

    PubMed  CAS  Google Scholar 

  • Grillo MA, Lanza A, Colombatto S (2008) Transport of amino acids through the placenta and their role. Amino Acids 34:517–523

    PubMed  CAS  Google Scholar 

  • Hayde M, Vierhapper H, Lubec B, Popow C, Weninger M, Xi Z, Lubec G (1994) Low-dose dietary l-arginine increases plasma interleukin 1 alpha but not interleukin 1 beta in patients with diabetes mellitus. Cytokine 6(1):79–82

    PubMed  CAS  Google Scholar 

  • Hiravama A, Noronha Dutra AA, Gordge MP, Neild GH, Hothersall JS (1997) Mechanism of inhibition by guanidino compounds on neutrophil superoxide production (Abstract). J Am Soc Nephrol 8:238A

    Google Scholar 

  • Horowitz HI, Cohen BD, Martinez P, Papayoanou MF (1967) Defective ADP-induced platelet factor 3 activation in uremia. Blood 30:331–340

    PubMed  CAS  Google Scholar 

  • Hou ZP, Yin YL, Huang RL et al (2008) Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance. J Sci Food Agric 88:1187–1193

    CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2011a) Protein-conjugated acrolein as a biochemical marker of brain infarction. Mol Nutr Food Res 55:1332–1341

    PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2011b) Use of polyamine metabolites as markers for stroke and renal failure. Methods Mol Biol 720:395–408

    PubMed  CAS  Google Scholar 

  • Igarashi K, Ueda S, Yoshida K, Kashiwagi K (2006) Polyamines in renal failure. Amino Acids 31:477–483

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishibashi Y, Yamagishi S, Matsui T et al (2012) Pravastatin inhibits advanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism 61:1067–1072

    PubMed  CAS  Google Scholar 

  • Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP (1999) Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99(24):3092–3095

    PubMed  CAS  Google Scholar 

  • Ito K, Chen J, Seshan SV et al (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateralureteral obstruction in rats. Kidney Int 68:515–528

    PubMed  CAS  Google Scholar 

  • Jaimes EA, del Castillo D, Rutherford MS, Raij L (2001) Countervailing influence of tumor necrosis factor-alpha and nitric oxide in endotoxemia. J Am Soc Nephrol 12:1204–1210

    PubMed  CAS  Google Scholar 

  • Jenkinson CP, Grody WW, Cederbaum SD (1996) Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 114:107–132

    PubMed  CAS  Google Scholar 

  • Jover B, Herizi A, Ventre F, Dupont M, Mimran A (1993) Sodium and angiotensin in hypertension induced by long-term nitric oxide blockade. Hypertension 21:944–948

    PubMed  CAS  Google Scholar 

  • Kaida Y, Ueda S, Yamagishi S et al (2012) Proteinuria elevates asymmetric dimethylarginine levels via protein arginine methyltransferase-1 overexpression in a rat model of nephrotic syndrome. Life Sci 91:301–305

    PubMed  CAS  Google Scholar 

  • Kajimoto H, Kai H, Aoki H et al (2012) Inhibition of eNOS phosphorylation mediates endothelial dysfunction in renal failure: new effect of asymmetric dimethylarginine. Kidney Int 81:762–768

    PubMed  CAS  Google Scholar 

  • Kanagy NL, Charpie JR, Webb RC (1995) Nitric oxide regulation of ADP-ribosylation of G proteins in hypertension. Med Hypotheses 44(3):159–164

    PubMed  CAS  Google Scholar 

  • Kharitonov SA, Lubec G, Lubec B, Hjelm M, Barnes PJ (1995) l-arginine increases exhaled nitric oxide in normal human subjects. Clin Sci Lond 88(2):135–139

    PubMed  CAS  Google Scholar 

  • Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D (2006) Symmetric dimethylarginine (SDMA) as endogenous marker of renal function–a meta-analysis. Nephrol Dial Transpl 21:2446–2451

    CAS  Google Scholar 

  • Kielstein JT, Fliser D, Veldink H (2009) Asymmetric dimethylarginine and symmetric dimethylarginine: axis of evil or useful alliance? Semin Dial 22:346–350

    PubMed  Google Scholar 

  • King DE, Mainous AG, Geesey ME (2008) Variation in l-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 28:21–24

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kittel A, Maas R, Konig J et al (2013) In vivo evidence that Agxt2 can regulate plasma levels of dimethylarginines in mice. Biochem Biophys Res Commun 430:84–89

    PubMed  CAS  Google Scholar 

  • Kone BC (1997) Nitric oxide in renal health and disease. Am J Kidney Dis 30:311–333

    PubMed  CAS  Google Scholar 

  • Kopincova J, Pύzserovà A, Bernátova I (2012) L_NAME in the cardiovascular system-nitric oxide synthase activator? Pharmacol Rep 64:511–520

    PubMed  CAS  Google Scholar 

  • Lakshmi SV, Padmaja G, Kuppusamy P, Kutala VK (2009) Oxidative stress in cardiovascular disease. Indian J Biochem Biophys 46(6):421–440

    PubMed  CAS  Google Scholar 

  • Leiper JM, Santa Maria J, Chubb A, MacAllister RJ, Charles IG, Whitley GS, Vallance P (1999) Identification of two human dimethylarginine dimethyla- minohydrolases with distinct tissue distributions and homology with micro- bial arginine deiminases. Biochem J 343:209–214

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    PubMed  CAS  Google Scholar 

  • Li G, Regunathan S, Reis DJ (1995) Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci 763:325–329

    PubMed  CAS  Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr, Haynes TE et al (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am J Physiol Endocrinol Metab 280:E75–E82

    PubMed  CAS  Google Scholar 

  • Li H, Meininger CJ, Kelly KA, Hawker JR Jr, Morris SM Jr, Wu G (2002) Activities of arginase I and II are limiting for endothelial cell proliferation. Am J Physiol Regul Integr Comp Physiol 282:R64–R69

    PubMed  CAS  Google Scholar 

  • Ligthart-Melis GC, van de Poll MCG, Boelens PG et al (2008) Glutamine is an important precursor for de novo synthesis of arginine in humans. Am J Clin Nutr 87:1282–1289

    PubMed  CAS  Google Scholar 

  • Lin KY, Ito A, Asagami T et al (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106:987–992

    PubMed  CAS  Google Scholar 

  • Lin Y, Wang LN, Xi YH, Li HZ, Xiao FG, Zhao YJ, Tian Y, Yang BF, Xu CQ (2008) l-arginine inhibits isoproterenol-induced cardiac hypertrophy through nitric oxide and polyamine pathways. Basic Clin Pharmacol Toxicol 103(2):124–130

    PubMed  CAS  Google Scholar 

  • Lortie MJ, Novotny WF, Peterson OW, Vallon V, Malvey K, Mendonca M, Satriano J, Insel P, Thomson SC, Blantz RC (1996) Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat. J Clin Invest 97:413–420

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lubec B, Aufricht C, Herkner K, Hoeger H, Adamiker D, Gialamas H, Fang-Kircher S, Lubec G (1994) Creatine reduces collagen accumulation in the kidneys of diabetic db/db mice. Nephron 67(2):214–217

    PubMed  CAS  Google Scholar 

  • Lubec B, Golej J, Marx M, Weninger M, Hoeger H (1995) l-arginine reduces kidney lipid peroxidation, glycoxidation and collagen accumulation in the aging NMRI mouse. Ren Physiol Biochem 18(2):97–102

    PubMed  CAS  Google Scholar 

  • Lubec B, Hoeger H, Kremser K, Amann G, Koller DY, Gialamas J (1996) Decreased tumor incidence and increased survival by one year oral low dose arginine supplementation in the mouse. Life Sci 58(25):2317–2325

    PubMed  CAS  Google Scholar 

  • Lubec B, Aufricht C, Amann G, Kitzmüller E, Höger H (1997a) Arginine reduces kidney collagen accumulation, cross-linking, lipid peroxidation, glycoxidation, kidney weight and albuminuria in the diabetic kk mouse. Nephron 75(2):213–218

    PubMed  CAS  Google Scholar 

  • Lubec B, Hayn M, Kitzmüller E, Vierhapper H, Lubec G (1997b) l-arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med 22(1–2):355–357

    PubMed  CAS  Google Scholar 

  • Macallister RJ, Whitley GS, Vallance P (1994) Effects of guanidine and uremic compounds on nitric oxide pathways. Kidney Int 45:737–742

    PubMed  CAS  Google Scholar 

  • Marescau B, Nagles G, Possemiers I et al (1997) Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 46:1024–1031

    PubMed  CAS  Google Scholar 

  • Martens CR, Edwards DG (2011) Peripheral vascular dysfunction in chronic kidney disease. Cardiol Res Pract 2011:257–267

    Google Scholar 

  • Martens-Lobenhoffer J, Rodionov RN, Drust A, Bode-Böger SM (2011) Detection and quantification of a keto d-(N(G), N(G)-dimethylguanidino) valeric acid: a metabolite of a symmetric dimethylarginine. Anal Biochem 419:234–240

    PubMed  CAS  Google Scholar 

  • Marx M, Trittenwein G, Aufricht C, Hoeger H, Lubec B (1995) Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db mice. Nephron 69:155–158

    PubMed  CAS  Google Scholar 

  • Marzocco S, Di Paola R, Genovese T, Sorrentino R, Britti D, Scollo G, Pinto A, Cuzzocrea S, Autore G (2004a) Methylguanidine reduces the development of non septic shock induced by zymosan in mice. Life Sci 75(12):1417–1433

    PubMed  CAS  Google Scholar 

  • Marzocco S, Di Paola R, Ribecco MT, Sorrentino R, Domenico B, Genesio M, Pinto A, Autore G, Cuzzocrea S (2004b) Effect of methylguanidine in a model of septic shock induced by LPS. Free Radic Res 38(11):1143–1153

    PubMed  CAS  Google Scholar 

  • Marzocco S, Di Paola R, Serraino I, Sorrentino R, Meli R, Mattaceraso G, Cuzzocrea S, Pinto A, Autore G (2004c) Effect of methylguanidine in carrageenan-induced acute inflammation in the rats. Eur J Pharmacol 484(2–3):341–350

    PubMed  CAS  Google Scholar 

  • Marzocco S, Popolo A, Bianco G, Pinto A, Autore G (2010) Pro-apoptotic effect of methylguanidine on hydrogen peroxide-treated rat glioma cell line. Neurochem Int 57(5):518–524

    PubMed  CAS  Google Scholar 

  • Marzocco S, Adesso S, Autore G (2013a) Guanidino compounds inhibit nitric oxide release in J774A.1 macrophages Pharmacology. OnLine 2:60–67

    Google Scholar 

  • Marzocco S, Adesso S, Autore G (2013b) Time related inhibition by methylguanidine in LPS-stimulated J774A.1 macrophages. Pharmacol OnLine 2:43–49

    CAS  Google Scholar 

  • Matsuguma K, Ueda S, Yamagishi S, Matsumoto Y, Kaneyuki U, Shibata R, Fujimura T, Matsuoka H, Kimoto M, Kato S, Imaizumi T, Okuda S (2006) Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J Am Soc Nephrol 17(8):2176–2183

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Mori A (1976) Convulsive activity of methylguanidine incat and rabbits. IRCS Med Sci 4:65

    CAS  Google Scholar 

  • Matsumoto A, Hirata Y, Kakoki M et al (1999) Increased excretion of Nitric oxide in exhaled air of patients with chronic renal failure. Clin Sci 96:67–74

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Ueda S, Yamagishi S, Matsuguma K, Shibata R, Fukami K, Matsuoka H, Imaizumi T, Okuda S (2007) Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol 18:1525–1533

    PubMed  CAS  Google Scholar 

  • Mihout F, Shweke N, Bigé N, Jouanneau C, Dussaule JC, Ronco P, Chatziantoniou C, Boffa JJ (2011) Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-β1 synthesis. J Pathol 223(1):37–45

    PubMed  CAS  Google Scholar 

  • Mitch W, Chesney R (1983) Amino acid metabolism by the kidney. Miner Electrolyte Metab 9:190–202

    PubMed  CAS  Google Scholar 

  • Moncada S (1997) Nitric oxide in the vasculature: physiology and pathophysiology. Ann NY Acad Sci 811:60–67 (discussion 67–69)

    PubMed  CAS  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137:1602S–1609S

    PubMed  CAS  Google Scholar 

  • Morris DR, Davis R, Coffino P (1991) A new perspective on ornithine decarboxylase regulation: prevention of polyamine toxicity is the overriding theme. J Cell Biochem 46:102–105

    PubMed  CAS  Google Scholar 

  • Morrissey JJ, Klahr S (1997) Agmatine activation of nitric oxide synthase in endothelial cells. Trans Assoc Am Physicians 109:51–57

    CAS  Google Scholar 

  • Morrissey J, McCracken R, Ishidoya S, Klahr S (1995) Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int 47:1458–1461

    PubMed  CAS  Google Scholar 

  • Nakayama Y, Ueda S, Yamagishi S, Obara N, Taguchi K, Ando R, Kaida Y, Iwatani R, Kaifu K, Yokoro M, Toyonaga M, Kusumoto T, Fukami K, Okuda S (2014) Asymmetric dimethylarginine accumulates in the kidney during ischemia/reperfusion injury. Kidney Int 85(3):570–578

    PubMed  CAS  PubMed Central  Google Scholar 

  • O’Quinn PR, Knabe DA, Wu G (2002) Arginine catabolism in lactating porcine mammary tissue. J Anim Sci 80:467–474

    PubMed  Google Scholar 

  • Odenlund M, Holmqvist B, Baldetorp B et al (2008) Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids. doi:10.1007/s00726-008-0060-7

    PubMed  Google Scholar 

  • Ogawa T, Kimoto M, Sasaoka K (1989) Purification and properties of a new enzyme, N, N-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem 264:10205–10209

    PubMed  CAS  Google Scholar 

  • Okubo K, Hayashi K, Wakino S, Matsuda H, Kubota E, Honda M, Tokuyama H, Yamamoto T, Kajiya F, Saruta T (2005) Role of asymmetrical dimethylarginine in renal microvascular endothelial dysfunction in chronic renal failure with hypertension. Hypertens Res 28:181–189

    PubMed  CAS  Google Scholar 

  • Onozato ML, Tojo A, Leiper J, Fujita T, Palm F, Wilcox CS (2008) Expression of NG, NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney: effects of angiotensin II receptor blockers. Diabetes 57:172–180

    PubMed  CAS  Google Scholar 

  • Orlando GF, Wolf G, Engelmann M (2008) Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35:17–27

    PubMed  CAS  Google Scholar 

  • Pegg AE (2013) Toxicity of polyamines and their metabolic products. Chem Res Toxicol 26:1782–1800

    PubMed  CAS  Google Scholar 

  • Pegg AE, Hibasami H (1980) Polyamine metabolism during cardiac hypertrophy. Am J Physiol 239(5):E372–E378

    PubMed  CAS  Google Scholar 

  • Peters H, Border WA, Noble NA (1999) l-arginine supplementation increased mesangial cell injury and subsequent tissue fibrosis in experimental glomerulonephritis. Kidney Int 55:2264–2273

    PubMed  CAS  Google Scholar 

  • Pieper GM (1997) Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 29:8–15

    PubMed  CAS  Google Scholar 

  • Popolo A, Autore G, Pinto A, Marzocco S (2013) Oxidative stress in cardiovascular and renal disease. Free Radic Res 47(5):346–356

    PubMed  CAS  Google Scholar 

  • Rackè K, Warnken M (2010) l-arginine metabolic pathway. Open Nitric Oxide J 2:9–19

    Google Scholar 

  • Radner W, Höger H, Lubec B, Salzer H, Lubec G (1994) L-arginine reduces kidney collagen accumulation and N-epsilon-(carboxymethyl)lysine in the aging NMRI-mouse. J Gerontol 49(2):M44–M46

    PubMed  CAS  Google Scholar 

  • Raghavan SAV, Dikshit M (2004) Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res 49:397–414

    PubMed  CAS  Google Scholar 

  • Raij L, Baylis C (1995) Glomerular actions of nitric oxide. Kidney Int 48:20–32

    PubMed  CAS  Google Scholar 

  • Rawal N, Rajpurohit R, Lischwe MA, Williams KR, Paik WK, Kim S (1995) Structural specificity of substrate for S-adenosylmethionine: protein arginine N-methyltransferases. Biochim Biophys Acta 1248:11–18

    PubMed  Google Scholar 

  • Reyes AA, Karl IE, Klahr S (1994) Role of arginine in health and in renal disease. Am J Physiol 267:F331–F346

    PubMed  CAS  Google Scholar 

  • Rodionov RN, Murry DJ, Vaulman SF, Stevens JW, Lentz SR (2010) Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J Biol Chem 285:5385–5391

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saiki R, Park H, Ishii I, Yoshida M et al (2011) Brain infarction correlates more closely with acrolein than with reactive oxygen species. Biochem Biophys Res Commun 404:1044–1049

    PubMed  CAS  Google Scholar 

  • Sakata K, Kashiwagi K, Sharmin S, Ueda S, Igarashi K (2003a) Acrolein produced from polyamines as one of the uraemic toxins. Biochem Soc Trans 31:371–374

    PubMed  CAS  Google Scholar 

  • Sakata K, Kashiwagi K, Sharmin S, Ueda S, Irie Y, Murotani N, Igarashi K (2003b) Increase in putrescine, amine oxidase, and acrolein in plasma of renal failure patients. Biochem Biophys Res Commun 305:143–149

    PubMed  CAS  Google Scholar 

  • Sastre M, Galea E, Feinstein D, Reis DJ, Regunathan S (1998) Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J 330:1405–1409

    PubMed  CAS  PubMed Central  Google Scholar 

  • Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316

    PubMed  CAS  Google Scholar 

  • Schepers E, Speer T, Bode-Böger SM, Fliser D, Kielstein JT (2014) Dimethylarginines ADMA and SDMA: the real water-soluble small toxins? Semin Nephrol 34:97–105

    PubMed  CAS  Google Scholar 

  • Schlüter KD, Frischkopf K, Flesch M, Rosenkranz S, Taimor G, Piper HM (2000) Central role for ornithine decarboxylase in beta-adrenoceptor mediated hypertrophy. Cardiovasc Res 45(2):410–417

    PubMed  Google Scholar 

  • Schneider R, Raff U, Vornberger N, Schmidt M, Freund R, Reber M, Schramm L, Gambaryan S, Wanner C, Schmidt HH, Galle J (2003) L-arginine counteracts nitric oxide deficiency and improves the recovery phase of ischemic acute renal failure in rats. Kidney Int 64:216–225

    PubMed  CAS  Google Scholar 

  • Schophuizen CM, Wilmer MJ, Jansen J, Gustavsson L, Hilgendorf C, Hoenderop JG, van den Heuvel LP, Masereeuw R (2013) Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Arch 465(12):1701–1714

    PubMed  CAS  Google Scholar 

  • Schramm L, Heidbreder E, Lopau K, Schaar J, Zimmermann J, Harlos J, Teschner M, Ling H, Heidland A (1996) Influence of nitric oxide on renal function in toxic acute renal failure in the rat. Miner Electrolyte Metab 22:168–177

    PubMed  CAS  Google Scholar 

  • Schramm L, La M, Heidbreder E, Hecker M, Beckman JS, Lopau K, Zimmermann J, Rendl J, Reiners C, Winderl S et al (2002) L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int 61:1423–1432

    PubMed  CAS  Google Scholar 

  • Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114(1):5–14

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartz D, Peterson OW, Mendonca M, Satriano J, Lortie M, Blantz RC (1997) Agmatine affects glomerular filtration via a nitric oxide synthase-dependent mechanism. Am J Physiol 272:F597–F601

    PubMed  CAS  Google Scholar 

  • Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, Spickler W, Schulze F, Böger RH (2008) Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br J Clin Pharmacol 65:51–59

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sharmin S, Sakata K, Kashiwagi K, Ueda S, Iwasaki S, Shirahata A, Igarashi K (2001) Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Commun 282:228–235

    PubMed  CAS  Google Scholar 

  • Shultz PJ, Raij L (1992) Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest 90:1718–1725

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6(2):82–90

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sternbergh WC, Makhoul RG, Adelman B (1993) Nitric oxidemediated, endothelium-dependent vasodilation is selectively attenuated in the postischemic extremity. Surgery 114:960–967

    PubMed  CAS  Google Scholar 

  • Stratta P, Canvese C, Dogliani M et al (1991) The role of free radicals in the progression of renal disease. Am J Kid Dis 17:33–37

    PubMed  CAS  Google Scholar 

  • Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104(21):2569–2575

    PubMed  Google Scholar 

  • Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286(5444):1583–1587

    PubMed  CAS  Google Scholar 

  • Tabor CW, Rosenthal SM (1956) Pharmacology of spermine and spermidine; some effects on animals and bacteria. J Pharmacol Exp Ther 116:139–155

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    PubMed  CAS  PubMed Central  Google Scholar 

  • Teerlink T, Luo Z, Palm F, Wilcox CS (2009) Cellular ADMA: regulation and action. Pharmacol Res 60:448–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tipnis UR, He GY, Li S, Campbell G, Boor PJ (2000) Attenuation of isoproterenol-mediated myocardial injury in rat by an inhibitor of polyamine synthesis. Cardiovasc Pathol 5:273–280

    Google Scholar 

  • Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K (2005) Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36:2609–2613

    PubMed  CAS  Google Scholar 

  • Tran CT, Fox MF, Vallance P, Leiper JM (2000) Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins. Genomics 68:101–105

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Tomita S, Ishizawa K et al (2010) Dietary nitrite ameliorates renal injury in L-NAME induced hypertensive rats. Nitric Oxide 22:98–103

    PubMed  CAS  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    PubMed  CAS  Google Scholar 

  • van de Poll MCG, Siroen MPC, van Leeuwen PAM et al (2007) Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 85:167–172

    PubMed  Google Scholar 

  • Vanholder R, De Smet R (1999) Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol 10:1815–1823

    PubMed  CAS  Google Scholar 

  • Víteček J, Lojek A, Valacchi G, Kubala L (2012) Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediat Inflamm 2012:318087

    Google Scholar 

  • Vos IH, Rabelink TJ, Dorland B, Loos R, van Middelaar B, Grone HJ, Joles JA (2001) l-Arginine supplementation improves function and reduces inflamation in renal allografts. J Am Soc Nephrol 12:361–367

    PubMed  CAS  Google Scholar 

  • Wang D, Gill PS, Chabrashvili T, Onozato ML, Raggio J, Mendonca M, Dennehy K, Li M, Modlinger P, Leiper J, Vallance P, Adler O, Leone A, Tojo A, Welch WJ, Wilcox CS (2007) Isoform-specific regulation by N(G), N(G)-dimethylarginine dimethylaminohydrolase of rat serum asym- metric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ Res 101:627–635

    PubMed  CAS  Google Scholar 

  • Watanabe S, Kusama-Eguchi K, Kobayashi H, Igarashi K (1991) Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J Biol Chem 266:20803–20809

    PubMed  CAS  Google Scholar 

  • Weisensee D, Lo¨w-Friedrich I, Riehle M, Bereiter-Hahn J, Schoeppe W (1993) In vitro approach to uremic cardiomyopathy. Nephron 65:392–400

    PubMed  CAS  Google Scholar 

  • Wilcox CS (2012) Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension 59:375–381

    PubMed  CAS  PubMed Central  Google Scholar 

  • William N (1998) NO news is good news but only for three Americans. Science 282:610–611

    Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:2437–2444

    PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol Regul Integr Comp Physiol 269:R621–R629

    CAS  Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    PubMed  CAS  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. BioFactors 35(1):21–27

    PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007c) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37(1):153–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yilmaz MI, Saglam M, Sonmez A et al (2007) Improving proteinuria, endothelial functions and asymmetric dimethylarginine levels in chronic kidney disease: ramipril vs. valsartan. Blood Purif 25:327–335

    PubMed  CAS  Google Scholar 

  • Yokozawa T, Fujitsuka N, Oura H, Akao T, Kobashi K, Ienaga K, Nakamura K, Hattori M (1993) Purification of methylguanidine synthase from the rat kidney. Nephron 63:452–457

    PubMed  CAS  Google Scholar 

  • Yoshida M, Higashi K, Kobayashi E et al (2010) Correlation between images of silent brain infarction, carotid atherosclerosis and white matter hyperintensity, and plasma levels of acrolein, IL-6 and CRP. Atherosclerosis 211:475–479

    PubMed  CAS  Google Scholar 

  • Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M (2007) Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 292:C1204–C1215

    PubMed  CAS  Google Scholar 

  • Zahedi K, Lentsch AB, Okaya T, Barone SL, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Janne J, Porter CW, Soleimani M (2009) Spermidine/spermine-N1-acetyltransferase ablation protects against liver and kidney ischemia reperfusion injury in mice. Am J Physiol Gastrointest Liver Physiol 296:G899–G909

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zahedi K, Barone S, Kramer DL, Amlal H, Alhonen L, Janne J, Porter CW, Soleimani M (2010) The role of spermidine/spermine N1-acetyltransferase in endotoxin-induced acute kidney injury. Am J Physiol Cell Physiol 299:C164–C174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zatz R, Baylis C (1998) Chronic nitric oxide inhibition model six years on. Hypertension 32:958–964

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Frohlich ED (2007) Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med Chem 3:61–65

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Marzocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popolo, A., Adesso, S., Pinto, A. et al. l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 46, 2271–2286 (2014). https://doi.org/10.1007/s00726-014-1825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1825-9

Keywords

Navigation