Skip to main content
Log in

Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Bacteria in pig intestine can actively metabolize amino acids (AA). However, little research has focused on the variation in AA metabolism by bacteria from different niches. This study compared the metabolism of AA by microorganisms derived from the lumen and epithelial wall of the pig small intestine, aiming to test the hypothesis that the metabolic profile of AA by gut microbes was niche specific. Samples from the digesta, gut wall washes and gut wall of the jejunum and ileum were used as inocula. Anaerobic media containing single AA were used and cultured for 24 h. The 24-h culture served as inocula for the subsequent 30 times of subcultures. Results showed that for the luminal bacteria, all AA concentrations except phenylalanine in the ileum decreased during the 24-h in vitro incubation with a increase of ammonia concentration, while 4 AA (glutamate, glutamine, arginine and lysine) in the jejunum decreased, with the disappearance rate at 60–95 %. For tightly attached bacteria, all AA concentrations were generally increased during the first 12 h and then decreased coupled with first a decrease and then an increase of ammonia concentration, suggesting a synthesis first and then a catabolism pattern. Among them, glutamate in both segments, histidine in the jejunum and lysine in the ileum increased significantly during the first 12 h and then decreased at 24 h. The concentrations of glutamine and arginine did not change during the first 12 h, but significantly decreased at 24 h. Jejunal lysine and ileal threonine were increased for the first 6 or 12 h. For the loosely attached bacteria, there was no clear pattern for the entire AA metabolism. However, glutamate, methionine and lysine in the jejunum decreased after 24 h of cultivation, while glutamine and threonine in the jejunum and glutamine and lysine in the ileum increased in the first 12 h. During subculture, AA metabolism, either utilization or synthesis, was generally decreased with disappearance rate around 20–40 % for most of AA and negligible for branch chained AA (BCAA). However, the disappearance rate of lysine in each group was around 90 % throughout the subculture, suggesting a high utilization of lysine by bacteria from all three compartments. Analysis of the microbial community during the 24-h in vitro cultivation revealed that bacteria composition in most AA cultures varied between different niches (lumen and wall-adherent fractions) in the jejunum, while being relatively similar in the ileum. However, for isoleucine and leucine cultures, bacteria diversity was similar between the luminal fraction and tightly attached fraction, but significantly higher than in the loosely attached fraction. For glutamine and valine cultures, bacteria diversity was similar between the luminal and loosely attached fractions, but lower than that of tightly attached bacteria. After 30 subcultures, bacteria diversity in arginine, valine, glutamine, and leucine cultures varied between niches in the jejunum while being relatively stable in the ileum, consistent with those in the 24-h in vitro cultures. The findings may suggest that luminal bacteria tended to utilize free AA, while tightly attached adherent bacteria seemed in favor of AA synthesis, and that small intestinal microbes contributed little to BCAA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amino acids

EAA:

Essential amino acids

BCAA:

Branched-chain amino acids

DGGE:

Denaturing gradient gel electrophoresis

References

  • Burrin DG, Davis TA (2004) Proteins and amino acids in enteral nutrition. Curr Opin Clin Nutr Metab Care 7(1):79

    Article  PubMed  CAS  Google Scholar 

  • Chamorro S, De Blas C, Grant G, Badiola I, Menoyo D, Carabano R (2010) Effect of dietary supplementation with glutamine and a combination of glutamine–arginine on intestinal health in twenty-five-day-old weaned rabbits. J Anim Sci 88(1):170–180

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest sci 109(1–3):19–23

    Article  Google Scholar 

  • Chen L, Li P, Wang J, Li X, Gao H, Yin Y, Hou Y, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37(1):143–152

    Article  PubMed  CAS  Google Scholar 

  • Croucher SC, Houston AP, Bayliss CE, Turner R (1983) Bacterial populations associated with different regions of the human colon wall. Appl Environ Microbiol 45(3):1025–1033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dai ZL, Zhang J, Wu G, Zhu WY (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39(5):1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42(5):1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB, Zhang J, Wu GY, Zhu WY (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45(3):501–512

    Article  PubMed  CAS  Google Scholar 

  • Durbán A, Abellán JJ, Jiménez-Hernández N, Ponce M, Ponce J, Sala T, D’Auria G, Latorre A, Moya A (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol 61(1):123–133

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635

    Article  PubMed  PubMed Central  Google Scholar 

  • El Aidy S, Derrien M, Merrifield CA, Levenez F, Dore J, Boekschoten MV, Dekker J, Holmes E, Zoetendal EG, van Baarlen P, Claus SP, Kleerebezem M (2013) Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME J 7(4):743–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18(1):385–411

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Forster RJ, Yu H, Chambers JR, Sabour PM, Wheatcroft R, Chen S (2002) Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol Lett 208(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C, Han Y (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol 59(1):147–157

    Article  PubMed  CAS  Google Scholar 

  • Klose V, Bayer K, Bruckbeck R, Schatzmayr G, Loibner AP (2010) In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens. Vet Microbiol 144(3–4):515–521

    Article  PubMed  Google Scholar 

  • Libao-Mercado AJ, Zhu CL, Cant JP, Lapierre H, Thibault JN, Seve B, Fuller MF, de Lange CF (2009) Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J Nutr 139(6):1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB (2014) Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. doi:10.1038/ismej.2014.12

    PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S (1997) Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol 32(222):3–9

    CAS  Google Scholar 

  • Merrick M, Edwards R (1995) Nitrogen control in bacteria. Microbiol Rev 59(4):604–622

    PubMed  CAS  PubMed Central  Google Scholar 

  • Metges CC (2000) Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 130(7):1857–1864

    Google Scholar 

  • Metges CC, Loh G (2003) Intestinal microbial amino acid synthesis and its importance for the amino acid homeostasis of the monogastric host. In: Souffrant WB, Metges CC (eds) Progress in research on energy and protein metabolism. Wageningen Academic Publishers, The Netherlands, pp 579–592

  • Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedri S, Regan MM, Fuller MF, Young VR (1999) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70(6):1046–1058

    PubMed  CAS  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178(19):5636–5643

    PubMed  PubMed Central  Google Scholar 

  • Nyachoti C, De Lange C, McBride B, Schulze H (1997) Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can J Anim Sci 77(1):149–163

    Article  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    Article  PubMed  Google Scholar 

  • Pei C-X, Mao S-Y, Cheng Y-F, Zhu W-Y (2010) Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4(01):20–29

    Article  PubMed  CAS  Google Scholar 

  • Probert H, Gibson G (2002) Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol 3(2):23–27

    PubMed  CAS  Google Scholar 

  • Pullan R, Thomas G, Rhodes M, Newcombe R, Williams G, Allen A, Rhodes J (1994) Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35(3):353–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57(1):155–176

    Article  PubMed  CAS  Google Scholar 

  • Sadet S, Martin C, Meunier B, Morgavi D (2007) PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal 1(7):939–944

    Article  PubMed  CAS  Google Scholar 

  • Savage DC (1972) Associations and physiological interactions of indigenous microorganisms and gastrointestinal epithelia. Am J Clin Nutr 25(12):1372

    PubMed  CAS  Google Scholar 

  • Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI (1999) Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36(3):167–179

    Article  PubMed  CAS  Google Scholar 

  • Smith E, MacFarlane G (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3(5):327–337

    Article  PubMed  CAS  Google Scholar 

  • Stewart C (1997) The rumen microbial ecosystem. Springer, Germany

    Google Scholar 

  • Stoll B, Burrin D (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(13 Electronic Supplement 1):60–72

  • Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128(3):606–614

    PubMed  CAS  Google Scholar 

  • Su Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY (2008) 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe 14(2):78–86

    Article  PubMed  CAS  Google Scholar 

  • Torrallardona D, Harris CI, Fuller MF (2003) Pigs’ gastrointestinal microflora provide them with essential amino acids. J Nutr 133(4):1127–1131

    PubMed  CAS  Google Scholar 

  • Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S (2011) The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev 35:681–704

    Article  PubMed  Google Scholar 

  • Van den Abbeele P, Roos S, Eeckhaut V, MacKenzie DA, Derde M, Verstraete W, Marzorati M, Possemiers S, Vanhoecke B, Van Immerseel F (2012) Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol 5(1):106–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen L, Li P, Li X, Zhou H, Wang F, Li D, Yin Y, Wu G (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138(6):1025–1032

    PubMed  CAS  Google Scholar 

  • Wang W, Qiao S, Li D (2009) Amino acids and gut function. Amino Acids 37(1):105–110

    Article  PubMed  CAS  Google Scholar 

  • Whitt DD, Demoss RD (1975) Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl Microbiol 30(4):609–615

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1(1):31–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Morris S Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336(1):1–17

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126(10):2578–2584

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer F, Johnson G, Knabe D, Burghardt R, Spencer T, Li X, Wang J (2011) Triennial growth symposium: important roles for l-glutamine in swine nutrition and production. J Anim Sci 89(7):2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Xi P, Jiang Z, Dai Z, Li X, Yao K, Zheng C, Lin Y, Wang J, Wu G (2011) Regulation of protein turnover by l-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23(8):1012–1017

    Article  PubMed  Google Scholar 

  • Zoetendal EG, Von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans ADL, De Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68(7):3401–3407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (2013CB127300). The author thanks the PhD student Jingfei Zhang for assistance with the experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YX., Dai, ZL. & Zhu, WY. Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 46, 2489–2501 (2014). https://doi.org/10.1007/s00726-014-1807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1807-y

Keywords

Navigation