Skip to main content

Advertisement

Log in

Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Cathelicidins are phylogenetically ancient, pleiotropic host defense peptides—also called antimicrobial peptides (AMPs)—expressed in numerous life forms for innate immunity. Since even the jawless hagfish expresses cathelicidins, these genetically encoded host defense peptides are at least 400 million years old. More recently, cathelicidins with varying antipathogenic activities and cytotoxicities were discovered in the venoms of poisonous snakes; for these creatures, cathelicidins may also serve as weapons against prey and predators, as well as for innate immunity. We report herein the expression of orthologous cathelicidin genes in the venoms of four different South American pit vipers (Bothrops atrox, Bothrops lutzi, Crotalus durissus terrificus, and Lachesis muta rhombeata)—distant relatives of Asian cobras and kraits, previously shown to express cathelicidins—and an elapid, Pseudonaja textilis. We identified six novel, genetically encoded peptides: four from pit vipers, collectively named vipericidins, and two from the elapid. These new venom-derived cathelicidins exhibited potent killing activity against a number of bacterial strains (S. pyogenes, A. baumannii, E. faecalis, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa), mostly with relatively less potent hemolysis, indicating their possible usefulness as lead structures for the development of new anti-infective agents. It is worth noting that these South American snake venom peptides are comparable in cytotoxicity (e.g., hemolysis) to human cathelicidin LL-37, and much lower than other membrane-active peptides such as mastoparan 7 and melittin from bee venom. Overall, the excellent bactericidal profile of vipericidins suggests they are a promising template for the development of broad-spectrum peptide antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  PubMed  CAS  Google Scholar 

  • Bals R, Wilson JM (2003) Cathelicidins: a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60:711–720

    Article  PubMed  CAS  Google Scholar 

  • Barlow A, Pook CE, Harrison RA, Wüster W (2009) Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci 276:2443–2449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brandenburg L-O, Varoga D, Nicolaeva N, Leib SL, Wilms H, Podschun R, Wruck CJ, Schroëder J-M, Pufe T, Lucius R (2008) Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 67:1041–1054

    Article  PubMed  CAS  Google Scholar 

  • Brusselaers N, Vogelaers D, Blot S (2011) The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 1:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CI, Zhang YA, Zou J et al (2006) Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Antimicrob Agents Chemother 50:185–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cole AM, Lehrer RI (2003) Minidefensins: antimicrobial peptides with activity against HIV-1. Curr Pharm Des 9:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Cury Y, Picolo G (2006) Animal toxins as analgesics: an overview. Drug News Perspect 19:381–392

    Article  PubMed  CAS  Google Scholar 

  • Da Silva AP, Unks D, Lyu SC, Ma J, Zbozien-Pacamaj R, Chen X et al (2008) In vitro and in vivo antimicrobial activity of granulysin-derived peptides against Vibrio cholerae. J Antimicrob Chemother 61:1103–1109

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425

    Article  PubMed  Google Scholar 

  • Fox JW, Serrano SM (2007) Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des 13:2927–2934

    Article  PubMed  CAS  Google Scholar 

  • Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    Article  PubMed  CAS  Google Scholar 

  • Hao X, Yang H, Wei L, Yang S, Zhu W, Ma D, Yu H, Lai R (2012) Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids 43:677–685

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann MH, Bruns H, Bäckdahl L, Neregård P, Niederreiter B, Herrmann M, Catrina AI, Agerberth B, Holmdahl R (2013) The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats. Ann Rheum Dis 72:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY Jr, Ho PL, Diniz MR (2006) Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 173:877–889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–315

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Ma Y, Wang X, Liang J, Zhang C et al (2008) The first antimicrobial peptide from sea amphibian. Mol Immunol 45:678–681

    Article  PubMed  CAS  Google Scholar 

  • Lynn DJ, Higgs R, Gaines S et al (2004) Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170–177

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ML (2011) Host-defense peptides: from biology to therapeutic strategies. Cell Mol Life Sci 68:2157–2159

    Article  PubMed  CAS  Google Scholar 

  • Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374

    Article  PubMed  Google Scholar 

  • Mirshafiey A (2007) Venom therapy in multiple sclerosis. Neuropharmacology 53:353–361

    Article  PubMed  CAS  Google Scholar 

  • Morizane S, Gallo RL (2012) Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol 39:225–330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mortari MR, Cunha AO, Ferreira LB, dos Santos WF (2007) Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther 114:171–183

    Article  PubMed  CAS  Google Scholar 

  • Nawarak J, Sinchaikul S, Wu CY, Liau MY, Phutrakul S, Chen ST (2003) Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis 24:2838–2854

    Article  PubMed  CAS  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341:501–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Radis-Baptista G (2011) Molecular toxinology—Cloning toxin genes for addressing functional analysis and disclosing drug leads. In: Brown G (ed) Molecular cloning, selected applications in medicine and biology. InTech, Rijeka, pp 161–196

    Google Scholar 

  • Ramanathan B, Davis EG, Ross CR et al (2002) Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372

    Article  PubMed  CAS  Google Scholar 

  • Rocha e Silva M, Beraldo WT, Rosenfeld G (1949) Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol 156:261–273

    PubMed  Google Scholar 

  • Saar K, Lindgren M, Hansen M, Eiríksdóttir E, Jiang Y, Rosenthal-Aizman K, Sassian M, Langel Ü (2005) Cell-penetrating peptides: A comparative membrane toxicity study. Anal Biochem 345:55–65

  • Sabatier JM (2011) Animal venoms: from deadly arsenals (toxins) to therapeutic drug candidates. Inflamm Allergy Drug Targets 10:312

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2011) Molecular cloning: a laboratory manual. CSHL Press, New York

    Google Scholar 

  • Tomasinsig L, Zanetti M (2005) The cathelicidins–structure, function and evolution. Curr Protein Pept Sci 6:23–34

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Pulido D, Rivas L, Andreu D (2012) Antimicrobial peptide action on parasites. Curr Drug Targets 13:1138–1147

    Article  PubMed  CAS  Google Scholar 

  • Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notredame C, Boix E, Andreu D (2013a) AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics 28:130–131

    Article  Google Scholar 

  • Torrent M, Pulido D, Valle J, Nogués MV, Andreu D, Boix E (2013b) Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem J 456:99–108

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L (2002) Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 8:743–761

    Article  PubMed  CAS  Google Scholar 

  • Uzzell T, Stolzenberg ED, Shinnar AE et al (2003) Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides 24:1655–1667

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Song Y, Li J, Liu H, Xu X et al (2007) A new family of antimicrobial peptides from skin secretions of Rana pleuraden. Peptides 28:2069–2074

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Hong J, Liu X et al (2008) Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS ONE 3:e3217

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, Dou J, Zhou C (2013) BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol 707:1–10

    Article  PubMed  CAS  Google Scholar 

  • Watters MR (2005) Tropical marine neurotoxins: venoms to drugs. Semin Neurol 25:278–289

    Article  PubMed  Google Scholar 

  • Zaenker KS (2011) Wedding bells: animal venoms and therapeutic drug candidate. Inflamm Allergy Drug Targets 10:311

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Ye XJ, Ng TB (2013) Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr Protein Pept Sci 14:504–514

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Cai Y, Bommineni YR et al (2006) Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 281:2858–2867

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Gallo RL (2011) Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc 15:12–15

    Article  PubMed  CAS  Google Scholar 

  • Zaiou M, Gallo RL (2002) Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl) 80:549–561

    Article  CAS  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  Google Scholar 

  • Zanetti M, Litteri L, Gennaro R, Horstmann H, Romeo D (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J Cell Biol 111:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zelezetsky I, Pontillo A, Puzzi L, Antcheva N, Segat L, Pacor S et al (2006) Evolution of the primate cathelicidin. Correlation between structural variations and antimicrobial activity. J Biol Chem 281:19861–19871

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH et al (2008) Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 29:1685–1691

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Gao B (2013) Evolutionary origin of β-defensins. Dev Comp Immunol 39:79–84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research at Federal University of Ceará supported by the Brazilian National Council for Scientific and Technological Development (CNPq), by the Ministry of Science and Technology, and by the Coordination for the Improvement of Higher Education Personnel (CAPES). Research at Pompeu Fabra University supported by the Spanish Ministry of Science and Innovation (SAF 2011-24899) and by Generalitat de Catalunya (SGR2009-00492). Mobility support from the European Commission, Marie Curie Actions—International Research Staff Exchange Scheme (no. 247513, MEMPEPACROSS), is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Andreu or G. Rádis-Baptista.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcao, C.B., de La Torre, B.G., Pérez-Peinado, C. et al. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids 46, 2561–2571 (2014). https://doi.org/10.1007/s00726-014-1801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1801-4

Keywords

Navigation