Advertisement

Amino Acids

, Volume 46, Issue 10, pp 2435–2444 | Cite as

Design and synthesis of mono and bicyclic tetrapeptides thioester as potent inhibitor of histone deacetylases

  • Md. Ashraful HoqueEmail author
  • Md. Shahidul Islam
  • Md. Nurul Islam
  • Tamaki Kato
  • Norikazu Nishino
  • Akihiro Ito
  • Minoru Yoshida
Original Article

Abstract

Inhibitors of histone deacetylases (HDACs) are a promising class of anticancer agents that have an effect on gene regulation. The naturally occurring cyclic depsipeptide FK228 containing disulfide and Largazole possessing thioester functionalities act as pro-drugs and share the same HDAC inhibition mechanism in cell. Inspired from these facts, we have reported bicyclic tetrapeptide disulfide HDAC inhibitors resembling FK228 with potent activity and enhanced selectivity. In the present study, we report the design and synthesis of several mono and bicyclic tetrapeptide thioester HDAC inhibitors that share the inhibition mechanism similar to Largazole. Most of the compounds showed HDAC1 and HDAC4 inhibition and p21 promoting activity in nanomolar ranges. Among these the monocyclic peptides 1, 2 and bicyclic peptide, 4 are notable demanding more advanced research to be promising anticancer drug candidates.

Keywords

Histone deacetylase inhibitors Depsipeptide Largazole Bicyclic tetrapeptides 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Archer SY, Hodin RA (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9:171–174. doi: 10.1016/S0959-437X(99)80026-4-&gt PubMedCrossRefGoogle Scholar
  2. Bhuiyan MPI, Kato T, Okauchi T et al (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorg Med Chem 14:3438–3446. doi: 10.1016/j.bmc.2005.12.063 PubMedCrossRefGoogle Scholar
  3. Butler KV, Kozikowski AP (2008) Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr Pharm Des 14:505–528. doi: 10.2174/138161208783885353 PubMedCrossRefGoogle Scholar
  4. Cress WD, Seto E (2000) Histonedeacetylases, transcriptional control and cancer. J Cell Physiol 184:1–16PubMedCrossRefGoogle Scholar
  5. Dickinson M, Prince HM (2012) Romidepsin for relapsed and refractory cutaneous T-cell lymphoma clinical medicine insights. Dermatology 5:21–28. doi: 10.4137/CMD.S7252 Google Scholar
  6. Frey RR, Wada CK, Garland RB (2002) Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg Med Chem Lett 12:3443–3447. doi: 10.1016/S0960-894X(02)00754-0 PubMedCrossRefGoogle Scholar
  7. Furumai R, Matsuyama A, Kobashi M (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class 1 histone deacetylases. Cancer Res 62:4916–4921PubMedGoogle Scholar
  8. Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9:3–16PubMedCrossRefGoogle Scholar
  9. Hassig CA, Schreiber SL (1997) Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1:300–308. doi: 10.1016/S1367-5931(97)80066-X PubMedCrossRefGoogle Scholar
  10. Hoque AH, Yoshida M et al (2012) Cyclic tetrapeptides with thioacetate tails or intramolecular disulfide bridge as potent inhibitors of histone deacetylases. Bioorg Med Chem Lett 22:6770–6772. doi: 10.1016/j.bmcl.2012.03.004 PubMedCrossRefGoogle Scholar
  11. Islam NM, Nishino N et al (2010) Bicyclic peptides as potent inhibitors of histone deacetylases: optimization of alkyl loop length. Bioorg Med Chem Lett 20:997–999. doi: 10.1016/j.bmcl.2009.12.054 PubMedCrossRefGoogle Scholar
  12. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48PubMedCrossRefGoogle Scholar
  13. Mahlknecht U, Ottmann OG, Hoelzer D (2000) When the band begins to play: histone acetylation caught in the crossfire of gene control. Mol Carcinog 27:268–271. doi: 10.1002/(SICI)1098-2744(200004 PubMedCrossRefGoogle Scholar
  14. Mann BS, Johnson JR et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252. doi: 10.1634/theoncologist.12-10-1247 PubMedCrossRefGoogle Scholar
  15. Michaelides MR, Dellaria JF, Gong J et al (2001) Biaryl ether retrohydroxamates as potent, long-lived, orally bioavailable MMP inhibitors. Bioorg Med Chem Lett 11:1553–1556. doi: 10.1016/S0960-894X(01)00031-2 PubMedCrossRefGoogle Scholar
  16. Mulder GJ, Meerman JH (1983) Sulfation and glucuronidation as competing pathways in the metabolism of hydroxamic acids: the role of N, O-sulfonation in chemical carcinogenesis of aromatic amines. Environ Health Perspect 49:27–32PubMedCrossRefPubMedCentralGoogle Scholar
  17. Nishino N, Jose B, Okamura S et al (2003) Cyclic Tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org Lett 5:5079–5082. doi: 10.1021/ol036098e PubMedCrossRefGoogle Scholar
  18. Nishino N, Jose B et al (2004) Chlamydocin–hydroxamic acid analogues as histone deacetylase inhibitors. Bioorg Med Chem 12:5777–5784. doi: 10.1016/j.bmc.2004.08.041 PubMedCrossRefGoogle Scholar
  19. Nishino N, Shivashimpi GM et al (2008) Interaction of aliphatic cap group in inhibition of histone deacetylases by cyclic tetrapeptides. Bioorg Med Chem 16:437–445. doi: 10.1016/j.bmc.2007.09.021 PubMedCrossRefGoogle Scholar
  20. Shivashimpi GM, Amagai S, Kato T et al (2007) Molecular design of histone deacetylase inhibitors by aromatic ring shifting in chlamydocin framework. Bioorg Med Chem 15:7830–7839. doi: 10.1016/j.bmc.2007.08.041 PubMedCrossRefGoogle Scholar
  21. Suzuki T, Kouketsu A, Itoh Y et al (2006) Highly potent and selective histone deacetylase 6 inhibitors designed based on small-molecular substrate. J Med Chem 49:4809–4812. doi: 10.1021/jm060554y PubMedCrossRefGoogle Scholar
  22. Taori K, Paul VJ, Luesch H (2008) Structure and Activity of Largazole, a Potent Antiproliferative Agent from the Floridian Marine Cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807. doi: 10.1021/ja7110064 PubMedCrossRefGoogle Scholar
  23. Watanabe LA, Jose B, Kato T, Nishino N, Yoshida M (2004) Synthesis of L-a-amino-w-bromoalkanoic acid for side chain modification. Tetrahedron Lett 45(3):491–494. doi: 10.1016/j.tetlet.2003.11.007 CrossRefGoogle Scholar
  24. Yoshida M, Matsuayama A, Komatsu Y, Nishino N (2003) From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 10:2351–2358. doi: 10.2174/092986708784049612 PubMedCrossRefGoogle Scholar
  25. Zain J, Kaminetzky D, O’Connor OA (2010) Emerging role of epigenetic therapies in cutaneous T-cell lymphomas. Expert Rev Hematol 3:187–203. doi: 10.1586/ehm.10.9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Md. Ashraful Hoque
    • 1
    • 2
    • 3
    Email author
  • Md. Shahidul Islam
    • 3
    • 4
  • Md. Nurul Islam
    • 3
    • 4
  • Tamaki Kato
    • 3
  • Norikazu Nishino
    • 3
  • Akihiro Ito
    • 5
  • Minoru Yoshida
    • 5
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Biochemistry and Molecular Biology, Faculty of ScienceUniversity of RajshahiRajshahiBangladesh
  3. 3.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan
  4. 4.Department of Chemistry, Faculty of ScienceUniversity of RajshahiRajshahiBangladesh
  5. 5.RIKENSaitamaJapan

Personalised recommendations