Skip to main content
Log in

Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

A Correction to this article was published on 11 January 2021

This article has been updated

Abstract

This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

AKT:

Protein kinase B

Ang4 :

RNase angiogenin 4

Crs :

Cryptdin-related sequence

Ifn :

Interferon

Il :

Interleukin

Lyz2 :

Lysozyme 2

MAPK:

Mitogen-activated protein kinases

Muc :

Mucin

Myd88 :

Myeloid differentiation factor-88

NF-κB:

Nuclear factor kappa B

PI3K:

Phosphoinositide-3-kinases

Reg3γ :

Regenerating islet-derived 3 gamma

Spla2 :

Secretory group II A phospholipase A2

Tnf :

Tumor necrosis factor

Tlrs :

Toll-like receptors

References

  • Battersby AJ, Gibbons DL (2013) The gut mucosal immune system in the neonatal period. Pediatr Allergy Immunol. doi:10.1111/pai.12079

    PubMed  Google Scholar 

  • Ben DF, Yu XY, Ji GY et al (2012) TLR4 mediates lung injury and inflammation in intestinal ischemia–reperfusion. J Surg Res 174:326–333

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom KS, Kissoon-Singh V, Gibson DL et al (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6(5):e1000902

    Article  PubMed  PubMed Central  Google Scholar 

  • Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368

    Article  PubMed  CAS  Google Scholar 

  • Charania MA, Laroui H, Liu H et al (2013) Intestinal epithelial CD98 directly modulates the innate host response to enteric bacterial pathogens. Infect Immun 81:923–934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Q, Powell DW, Rane MJ et al (2003) Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 170:5302–5308

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Liu SP, Zhang FM et al (2014) Effects of dietary l-glutamine supplementation on specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. Amino Acids. doi:10.1007/s00726-014-1789-9

  • Chu H, Pazgier M, Jung G et al (2012) Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337:477–481

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2012) The Paneth cell, caloric restriction, and intestinal integrity. N Engl J Med 367:1560–1561

    Article  PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Zhang J, Wu G et al (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu G, Zhu WY (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012a) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012b) Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids 43:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2013) l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC et al (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B. doi:10.1016/j.jchromb.2014.03.025

    Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewaschuk JB, Murdoch GK, Johnson IR et al (2011) Glutamine supplementation improves intestinal barrier function in a weaned piglet model of Escherichia coli infection. Br J Nutr 106:870–877

    Article  PubMed  CAS  Google Scholar 

  • Forman RA, deSchoolmeester ML, Hurst RJ et al (2012) The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One 7(9):e42248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Miguel M, Gonzalez MJ, Quera R et al (2013) Innate immunity modulation by the IL-33/ST2 system in intestinal mucosa. Bio Med Res Int 2013:142492. doi:10.1155/2013/142492

    Google Scholar 

  • Geremia A, Biancheri P, Allan P et al (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10

    Article  PubMed  CAS  Google Scholar 

  • Gyires K, Toth VE, Zadori ZS (2013) Gut inflammation: current update on pathophysiology, molecular mechanism and pharmacological treatment modalities. Curr Pharm Des 20(7):1063–1081

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  PubMed  CAS  Google Scholar 

  • Hodin CM, Visschers RG, Rensen SS et al (2012) Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J Nutr 142:2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Zhang W et al (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2013) N-Acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513–522

    Article  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2014) Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid. Br J Nutr 111:1748–1758

    Article  PubMed  CAS  Google Scholar 

  • Jager S, Stange EF, Wehkamp J (2013) Inflammatory bowel disease: an impaired barrier disease. Langenbeck’s Arch Surg 398:1–12

    Article  Google Scholar 

  • Johnson IR, Ball RO, Baracos VE et al (2006) Glutamine supplementation influences immune development in the newly weaned piglet. Dev Comp Immunol 30:1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Lin A (2002) NF-kappa B at the crossroads of life and death. Nat Immunol 3:221–227

    Article  PubMed  CAS  Google Scholar 

  • King SL, Dekaney CM (2013) Small intestinal stem cells. Curr Opin Gastroenterol 29:140–145

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Marques R, Boneca IG (2011) Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 68:3661–3673

    Article  PubMed  CAS  Google Scholar 

  • Mondello S, Italiano D, Giacobbe MS et al (2010) Glutamine-supplemented total parenteral nutrition improves immunological status in anorectic patients. Nutrition 26:677–681

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Yin Y, Liu G et al (2012a) Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection. Amino Acids 42:2089–2094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ren WK, Liu G, Li TJ et al (2012b) Dietary supplementation with arginine and glutamine confers a positive effect in porcine circovirus-infected pig. J Food Agric Environ 10:485–490

    CAS  Google Scholar 

  • Ren W, Li Y, Yu X et al (2013a) Glutamine modifies immune responses of mice infected with porcine circovirus type 2. Br J Nutr 110:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Luo W, Wu M et al (2013b) Dietary l-glutamine supplementation improves pregnancy outcome in mice infected with type-2 porcine circovirus. Amino Acids 45:479–488

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Yin J, Zhu XP et al (2013c) Glutamine on intestinal inflammation: a mechanistic perspective. Eur J Inflamm 11:315–326

    CAS  Google Scholar 

  • Ren WK, Liu SP, Chen S et al (2013d) Dietary l-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 45:947–955

    Article  PubMed  CAS  Google Scholar 

  • Ren WK, Zou LX, Ruan Z et al (2013e) Dietary l-proline supplementation confers immuno-stimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids 45:555–561

    Article  PubMed  CAS  Google Scholar 

  • Ren W, Yin J, Wu M et al (2014a) Serum amino acids profile and the beneficial effects of l-arginine or l-glutamine supplementation in dextran sulfate sodium colitis. PLoS One 9(2):e88335

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren W, Chen S, Yin J et al (2014b) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995

    Article  PubMed  CAS  Google Scholar 

  • Rezaei R, Wang WW, Wu ZL et al (2013a) Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J Anim Sci Biotech 4:7

    Article  CAS  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD et al (2013b) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rist VTS, Eklund M, Bauer E et al (2012) Effect of feeding level on the composition of the intestinal microbiota in weaned piglets. J Anim Sci 90:19–21

    Article  PubMed  Google Scholar 

  • Rosenstiel P (2013) Stories of love and hate: innate immunity and host-microbe crosstalk in the intestine. Curr Opin Gastroenterol 29:125–132

    Article  PubMed  CAS  Google Scholar 

  • Ruth MR, Field CJ (2013) The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 4:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirbel A, Kessler S, Rieder F et al (2013) Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144:613–623

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Senftleben U, Karin M (2002) The IKK/NF-kappaB pathway. Crit Care Med 30:S18–S26

    Article  CAS  Google Scholar 

  • Wang J, Chen L, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Wei JW, Carroll RJ, Harden KK et al (2012) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids 42:2031–2035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Bazer FW, Johnson GA et al (2011) Important roles for l-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Lee YC, Liu HC, Yuan RY, Chiou HY, Hung CH, Hu CJ (2013a) Identification of TLR downstream pathways in stroke patients. Clin Biochem 46(12):1058–1064

  • Wu G, Wu ZL, Dai ZL et al (2013b) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Dai ZL et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  Google Scholar 

  • Zanello G, Berri M, Dupont J et al (2011) Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One 6(4):e18573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J, Yin YL, Shu XG et al (2013a) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Zhang SH, Qiao SY, Ren M et al (2013b) Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 45:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Li W, Huang X et al (2012) Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Arch Anim Nutr 66:347–356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (2013CB127301, 2012CB124704, 2012CB126305), NSFC (31330075, 31101729, 31301989, 31101730, 31201813, 31301988), Hunan Provincial Natural Science Foundation of China (13JJ2034), Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (No. 2013CL06), Changsha University of Science & Technology, P. R. China, Hubei Provincial Research and Development Program (Grant No. 2010BB023), Natural Science Foundation of Hubei Province (No. 2012FFB04805), Hubei One Hundred Talent Program, and Texas A&M AgriLife Research (H-82000).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Xiong.

Additional information

W. Ren and J. Duan contributed equally to the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Duan, J., Yin, J. et al. Dietary l-glutamine supplementation modulates microbial community and activates innate immunity in the mouse intestine. Amino Acids 46, 2403–2413 (2014). https://doi.org/10.1007/s00726-014-1793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1793-0

Keywords

Navigation