Advertisement

Amino Acids

, Volume 46, Issue 10, pp 2355–2364 | Cite as

A direct comparison of tumor angiogenesis with 68Ga-labeled NGR and RGD peptides in HT-1080 tumor xenografts using microPET imaging

  • Yahui Shao
  • Wansheng Liang
  • Fei Kang
  • Weidong Yang
  • Xiaowei Ma
  • Guiyu Li
  • Shu Zong
  • Kai ChenEmail author
  • Jing WangEmail author
Original Article

Abstract

Peptides containing asparagine-glycine-arginine (NGR) and arginine-glycine-aspartic acid (RGD) sequence are being developed for tumor angiogenesis-targeted imaging and therapy. The aim of this study was to compare the efficacy of NGR- and RGD-based probes for imaging tumor angiogenesis in HT-1080 tumor xenografts. Two PET probes, 68Ga-NOTA-G3-NGR2 and 68Ga-NOTA-G3-RGD2, were successfully prepared. In vitro stability, partition coefficient, tumor cell binding, as well as in vivo biodistribution properties were also analyzed for both PET probes. The results revealed that the two probes were both hydrophilic and stable in vitro and in vivo, and they were excreted predominately and rapidly through the kidneys. For both probes, the higher tumor uptake and lower accumulation in vital organs were determined. No significant difference between two probes was observed in terms of tumor uptake and the in vivo biodistribution properties. We concluded that these two probes are promising in tumor angiogenesis imaging. 68Ga-NOTA-G3-NGR2 has the potential as an alternative for PET imaging in patients with fibrosarcoma, and it may offer an opportunity to noninvasively monitor CD13-targeted therapy.

Graphical Abstract

Keywords

MicroPET imaging NGR RGD CD13 Integrin Tumor angiogenesis 68Ga labeling 

Notes

Acknowledgments

We thank Dr. Xiaoyuan Chen (National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA) for his generous gift of the NOTA-G3-RGD2 peptide. This work was supported by the USC Department of Radiology, the National Natural Science Foundation of China (Grant Nos. 81230033, 81227901, 81090270, 81371594), the National Basic Research Program of China (973 Program) (Grant No. 2011CB707704), and the International Cooperation Program of Xijing Hospital (Grant No. XJZT13G02).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2014_1788_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2632 kb)

References

  1. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380PubMedCrossRefGoogle Scholar
  2. Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, Peschel C, Lordick F, Schwaiger M (2008) Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49(1):22–29PubMedCrossRefGoogle Scholar
  3. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3):652–659PubMedCrossRefGoogle Scholar
  4. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257PubMedCrossRefGoogle Scholar
  5. Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for microPET imaging of CD13 receptor expression. Mol Pharm 10(1):417–427PubMedCrossRefGoogle Scholar
  6. Correia JD, Paulo A, Raposinho PD, Santos I (2011) Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans 40(23):6144–6167PubMedCrossRefGoogle Scholar
  7. Dijkgraaf I, Liu S, Kruijtzer JA, Soede AC, Oyen WJ, Liskamp RM, Corstens FH, Boerman OC (2007) Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 34(1):29–35PubMedCrossRefGoogle Scholar
  8. Dirksen A, Langereis S, de Waal BF, van Genderen MH, Meijer EW, de Lussanet QG, Hackeng TM (2004) Design and synthesis of a bimodal target-specific contrast agent for angiogenesis. Org Lett 6(26):4857–4860PubMedCrossRefGoogle Scholar
  9. Faintuch BL, Oliveira EA, Targino RC, Moro AM (2014) Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot 86C:41–45CrossRefGoogle Scholar
  10. García Garayoa E, Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwe DA, Schibli R, Schubiger PA (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19(12):2409–2416PubMedCrossRefGoogle Scholar
  11. Goggi JL, Bejot R, Moonshi SS, Bhakoo KK (2013) Stratification of 18F-labeled PET imaging agents for the assessment of antiangiogenic therapy responses in tumors. J Nucl Med 54(9):1630–1636PubMedCrossRefGoogle Scholar
  12. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2 (3):e70PubMedCrossRefPubMedCentralGoogle Scholar
  13. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nature Rev Clin Oncol 6(6):327–338CrossRefGoogle Scholar
  14. Jiang W, Jin G, Ma D, Wang F, Fu T, Chen X, Chen X, Jia K, Marikar FM, Hua Z (2012) Modification of cyclic NGR tumor neovasculature-homing motif sequence to human plasminogen kringle 5 improves inhibition of tumor growth. PLoS One 7(5):e37132PubMedCrossRefPubMedCentralGoogle Scholar
  15. Josephson L, Rudin M (2013) Barriers to clinical translation with diagnostic drugs. J Nucl Med 54(3):329–332PubMedCrossRefGoogle Scholar
  16. Kim J, Nam HY, Kim TI, Kim PH, Ryu J, Yun CO, Kim SW (2011) Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA. Biomaterials 32(22):5158–5166PubMedCrossRefPubMedCentralGoogle Scholar
  17. Li ZB, Chen K, Chen X (2008) 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur J Nucl Med Mol Imaging 35(6):1100–1108PubMedCrossRefGoogle Scholar
  18. Liu Z, Niu G, Shi J, Liu S, Wang F, Liu S, Chen X (2009) 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin αvβ3 PET imaging. Eur J Nucl Med Mol Imaging 36(6):947–957PubMedCrossRefGoogle Scholar
  19. Liu Z, Huang J, Dong C, Cui L, Jin X, Jia B, Zhu Z, Li F, Wang F (2012) 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm 9(5):1409–1417PubMedGoogle Scholar
  20. Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, Li G, Chen K, Zhang Y, Wang J (2013) 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino acids 44(5):1337–1345PubMedCrossRefGoogle Scholar
  21. Miao Y, Fisher DR, Quinn TP (2006) Reducing renal uptake of 90Y- and 177Lu-labeled alpha-melanocyte stimulating hormone peptide analogues. Nucl Med Biol 33(6):723–733PubMedCrossRefGoogle Scholar
  22. Mogensen CE, Solling SK (1977) Studies of renal tubular absorption: partial and near complete inhibition by certain amino acids. Scand J Clin Lab Invest 37(6):477–486PubMedCrossRefGoogle Scholar
  23. Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Controlled Release 143(2):265–273CrossRefGoogle Scholar
  24. Oliveira EA, Faintuch BL, Nunez EG, Moro AM, Nanda PK, Smith CJ (2012) Radiotracers for different angiogenesis receptors in a melanoma model. Melanoma Res 22(1):45–53PubMedCrossRefGoogle Scholar
  25. Parker D (1990) Tumor targeting with radiolabeled macrocycle-antibody conjugates. Chem Soc Rev 19(3):271–291CrossRefGoogle Scholar
  26. Pasqualini R, Koivunen E, Ruoslahti E (1995) A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 130(5):1189–1196PubMedCrossRefGoogle Scholar
  27. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727PubMedGoogle Scholar
  28. Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A (2012) Tumor endothelial markers as a target in cancer. Expert Opin Ther Targets 16(12):1215–1225PubMedCrossRefGoogle Scholar
  29. Riss PJ, Burchardt C, Roesch F (2011) A methodical 68Ga-labelling study of DO2A-(butyl-L-tyrosine)2 with cation-exchanger post-processed 68Ga: practical aspects of radiolabelling. Contrast Media Mol Imaging 6(6):492–498PubMedCrossRefGoogle Scholar
  30. Roesch F, Riss PJ (2010) The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 10(16):1633–1668PubMedCrossRefGoogle Scholar
  31. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, Wester HJ, Haubner R, Pöpperl G, Holtmannspötter M, Kretzschmar HA, Kessler H, Tonn JC, Schwaiger M, Beer AJ (2009) Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol 11(6):861–870PubMedCrossRefPubMedCentralGoogle Scholar
  32. Shamay Y, Shpirt L, Ashkenasy G, David A (2014) Complexation of cell-penetrating peptide-polymer conjugates with polyanions controls cells uptake of HPMA copolymers and anti-tumor activity. Pharm Res 31(3)768–769PubMedCrossRefGoogle Scholar
  33. Soudy R, Ahmed S, Kaur K (2012) NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. ACS Comb Sci 14(11):590–599PubMedCrossRefGoogle Scholar
  34. Tanaka K, Fukase K (2008) PET (positron emission tomography) imaging of biomolecules using metal-DOTA complexes: a new collaborative challenge by chemists, biologists, and physicians for future diagnostics and exploration of in vivo dynamics. Org Biomol Chem 6(5):815–828PubMedCrossRefGoogle Scholar
  35. Wang RE NY, Wu H, Hu Y, Cai J (2012) Development of NGR-based anti-cancer agents for targeted therapeutics and imaging. Anticancer Agents Med Chem 12(1):76–86PubMedCrossRefGoogle Scholar
  36. Wickstrom M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102(3):501–508PubMedCrossRefGoogle Scholar
  37. Zeglis B, Lewis JS (2011) A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans 40:6168–6195PubMedCrossRefPubMedCentralGoogle Scholar
  38. Zhang J, Lu X, Wan N, Hua Z, Wang Z, Huang H, Yang M, Wang F (2014) 68Ga-DOTA-NGR as a novel molecular probe for APN-positive tumor imaging using microPET. Nucl Med Biol 41(3):268–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Yahui Shao
    • 1
    • 2
  • Wansheng Liang
    • 3
  • Fei Kang
    • 1
  • Weidong Yang
    • 1
  • Xiaowei Ma
    • 1
  • Guiyu Li
    • 1
  • Shu Zong
    • 1
  • Kai Chen
    • 4
    Email author
  • Jing Wang
    • 1
    Email author
  1. 1.Department of Nuclear MedicineXijing Hospital, The Fourth Military Medical UniversityXi’anChina
  2. 2.Department of Nuclear MedicineGeneral Hospital of Jinan Military Area Command of the Chinese People’s Liberation ArmyJinanChina
  3. 3.Department of Nuclear MedicineLanzhou General Hospital of Lanzhou Military Area Command of the Chinese People’s Liberation ArmyLanzhouChina
  4. 4.Department of RadiologyMolecular Imaging Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations