Advertisement

Amino Acids

, Volume 46, Issue 10, pp 2333–2343 | Cite as

Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection

  • Da Jung Kim
  • Young Woong Lee
  • Myung Keun Park
  • Ju Ri Shin
  • Ki Jung Lim
  • Ju Hyun ChoEmail author
  • Sun Chang KimEmail author
Original Article

Abstract

Infected wounds cause delay in wound closure and impose significantly negative effects on patient care and recovery. Antimicrobial peptides (AMPs) with antimicrobial and wound closure activities, along with little opportunity for the development of resistance, represent one of the promising agents for new therapeutic approaches in the infected wound treatment. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 19-amino-acid designer peptide SHAP1 possessed salt-resistant antimicrobial activities. Here, we analyzed the wound closure activities of SHAP1 both in vitro and in vivo. SHAP1 did not affect the viability of human erythrocytes and keratinocytes up to 200 μM, and was not digested by exposure to proteases in the wound fluid, such as human neutrophil elastase and Staphylococcus aureus V8 proteinase for up to 12 h. SHAP1 elicited stronger wound closure activity than human cathelicidin AMP LL-37 in vitro by inducing HaCaT cell migration, which was shown to progress via transactivation of the epidermal growth factor receptor. In vivo analysis revealed that SHAP1 treatment accelerated closure and healing of full-thickness excisional wounds in mice. Moreover, SHAP1 effectively countered S. aureus infection and enhanced wound healing in S. aureus-infected murine wounds. Overall, these results suggest that SHAP1 might be developed as a novel topical agent for the infected wound treatment.

Keywords

Antimicrobial peptides SHAP1 Wound healing Infected wound treatment Protease resistance Cytotoxicity 

Notes

Acknowledgments

This work was supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Science, ICT & Future Planning (2011-0031955) and the Medicine & Bio Project for “New Drug Development through Fostering of Med-Bio Hub” of the Chungcheong Leading Industry Office (CCLIO) and Ministry of Knowledge Economy (MKE) (C2110907).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK (2004) EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 287:G1227–G1237PubMedCrossRefGoogle Scholar
  2. Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano MA, Carriero MV (2009) Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30:267–272PubMedCrossRefGoogle Scholar
  3. Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34:419–427PubMedCrossRefGoogle Scholar
  4. Carretero M, Del Rio M, Garcia M, Escamez MJ, Mirones I, Rivas L, Balague C, Jorcano JL, Larcher F (2004) A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J 18:1931–1933PubMedGoogle Scholar
  5. Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, Retamosa L, Jorcano JL, Rio MD, Larcher F (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol 128:223–236PubMedCrossRefGoogle Scholar
  6. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174PubMedCrossRefGoogle Scholar
  7. Choi JH, Choi DK, Sohn KC, Kwak SS, Suk J, Lim JS, Shin I, Kim SW, Lee JH, Joe CO (2012) Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin. J Biol Chem 287:25954–25963PubMedCrossRefPubMedCentralGoogle Scholar
  8. De Zotti M, Biondi B, Park Y, Hahm KS, Crisma M, Toniolo C, Formaggio F (2012) Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity. Amino Acids 43:1761–1777PubMedCrossRefGoogle Scholar
  9. Gopinath D, Kumar MS, Selvaraj D, Jayakumar R (2005) Pexiganan-incorporated collagen matrices for infected wound-healing processes in rat. J Biomed Mater Res A 73:320–331PubMedCrossRefGoogle Scholar
  10. Gronberg A, Zettergren L, Agren MS (2011) Stability of the cathelicidin peptide LL-37 in a non-healing wound environment. Acta Derm Venereol 91:511–515PubMedGoogle Scholar
  11. Guay DR (2003) Treatment of bacterial skin and skin structure infections. Expert Opin Pharmacother 4:1259–1275PubMedCrossRefGoogle Scholar
  12. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557PubMedCrossRefGoogle Scholar
  13. Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283:18636–18645PubMedCrossRefGoogle Scholar
  14. Jacobsen F, Mittler D, Hirsch T, Gerhards A, Lehnhardt M, Voss B, Steinau HU, Steinstraesser L (2005) Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther 12:1494–1502PubMedCrossRefGoogle Scholar
  15. Jang SA, Kim H, Lee JY, Shin JR, da Kim J, Cho JH, Kim SC (2012) Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides 34:283–289PubMedCrossRefGoogle Scholar
  16. Kim SC, Park IY, Kim JM (2008) Salt-resistant antimicrobial peptides and antimicrobial composition comprising thereof. Korea Patent 10-0836596Google Scholar
  17. Kim H, Jang JH, Kim SC, Cho JH (2013) De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother. doi: 10.1093/jac/dkt322 PubMedCentralGoogle Scholar
  18. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672PubMedCrossRefPubMedCentralGoogle Scholar
  19. Lee PH, Rudisill JA, Lin KH, Zhang L, Harris SM, Falla TJ, Gallo RL (2004) HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen 12:351–358PubMedCrossRefGoogle Scholar
  20. Lipsky BA, Hoey C (2009) Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49:1541–1549PubMedCrossRefGoogle Scholar
  21. Ma QQ, Dong N, Shan AS, Lv YF, Li YZ, Chen ZH, Cheng BJ, Li ZY (2012) Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids 43:2527–2536PubMedCrossRefGoogle Scholar
  22. Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 6:e16400PubMedCrossRefPubMedCentralGoogle Scholar
  23. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472PubMedCrossRefGoogle Scholar
  24. McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H (2011) The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J Antimicrob Chemother 66:693–701PubMedCrossRefGoogle Scholar
  25. Mookherjee N, Hancock RE (2007) Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci 64:922–933PubMedCrossRefGoogle Scholar
  26. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464PubMedCrossRefGoogle Scholar
  27. Myhrman E, Hakansson J, Lindgren K, Bjorn C, Sjostrand V, Mahlapuu M (2012) The novel antimicrobial peptide PXL150 in the local treatment of skin and soft tissue infections. Appl Microbiol Biotechnol 97:3085–3096PubMedCrossRefPubMedCentralGoogle Scholar
  28. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Investig Dermatol 127:594–604PubMedCrossRefGoogle Scholar
  29. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1(2005):0010PubMedGoogle Scholar
  30. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182PubMedCrossRefPubMedCentralGoogle Scholar
  31. Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901PubMedCrossRefGoogle Scholar
  32. Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 4:e5285PubMedCrossRefPubMedCentralGoogle Scholar
  33. Philp D, Badamchian M, Scheremeta B, Nguyen M, Goldstein AL, Kleinman HK (2003) Thymosin beta 4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen 11:19–24PubMedCrossRefGoogle Scholar
  34. Puddicombe SM, Polosa R, Richter A, Krishna MT, Howarth PH, Holgate ST, Davies DE (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14:1362–1374PubMedCrossRefGoogle Scholar
  35. Radek KA, Taylor KR, Gallo RL (2009) FGF-10 and specific structural elements of dermatan sulfate size and sulfation promote maximal keratinocyte migration and cellular proliferation. Wound Repair Regen 17:118–126PubMedCrossRefPubMedCentralGoogle Scholar
  36. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38((Database issue)):D227–D233PubMedCrossRefPubMedCentralGoogle Scholar
  37. Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J, Bals R (2005) Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289:L842–L848PubMedCrossRefGoogle Scholar
  38. Shin YP, Park HJ, Shin SH, Lee YS, Park S, Jo S, Lee YH, Lee IH (2010) Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob Agents Chemother 54:2855–2866PubMedCrossRefPubMedCentralGoogle Scholar
  39. Shin JR, Lim KJ, da Kim J, Cho JH, Kim SC (2013) Display of multimeric antimicrobial peptides on the Escherichia coli cell surface and its application as whole-cell antibiotics. PLoS One 8:e58997PubMedCrossRefPubMedCentralGoogle Scholar
  40. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679PubMedCrossRefPubMedCentralGoogle Scholar
  41. Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T (2008) Host defense peptides in wound healing. Mol Med 14:528–537PubMedCrossRefPubMedCentralGoogle Scholar
  42. Steinstraesser L, Kraneburg UM, Hirsch T, Kesting M, Steinau HU, Jacobsen F, Al-Benna S (2009) Host defense peptides as effector molecules of the innate immune response: a sledgehammer for drug resistance? Int J Mol Sci 10:3951–3970PubMedCrossRefPubMedCentralGoogle Scholar
  43. Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53:593–602PubMedCrossRefPubMedCentralGoogle Scholar
  44. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668PubMedCrossRefGoogle Scholar
  45. Torpy JM, Burke A, Glass RM (2005) JAMA patient page. Wound infections. JAMA 294:2122PubMedCrossRefGoogle Scholar
  46. Winter J, Wenghoefer M (2012) Human defensins: potential tools for clinical applications. Polymers 4:691–709CrossRefGoogle Scholar
  47. Yin J, Yu FS (2010) LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas. Invest Ophthalmol Vis Sci 51:1891–1897PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Da Jung Kim
    • 1
  • Young Woong Lee
    • 1
  • Myung Keun Park
    • 1
  • Ju Ri Shin
    • 1
  • Ki Jung Lim
    • 1
  • Ju Hyun Cho
    • 2
    Email author
  • Sun Chang Kim
    • 1
    Email author
  1. 1.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Department of Biology, Research Institute of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations