Amino Acids

, Volume 46, Issue 9, pp 2259–2269 | Cite as

Poly-lysine peptidomimetics having potent antimicrobial activity without hemolytic activity

  • Mija Ahn
  • Binu Jacob
  • Pethaiah Gunasekaran
  • Ravichandran N. Murugan
  • Eun Kyoung Ryu
  • Ga-hyang Lee
  • Jae-Kyung Hyun
  • Chaejoon Cheong
  • Nam-Hyung Kim
  • Song Yub ShinEmail author
  • Jeong Kyu BangEmail author
Original Article


Diversity of sequence and structure in naturally occurring antimicrobial peptides (AMPs) limits their intensive structure–activity relationship (SAR) study. In contrast, peptidomimetics have several advantages compared to naturally occurring peptide in terms of simple structure, convenient to analog synthesis, rapid elucidation of optimal physiochemical properties and low-cost synthesis. In search of short antimicrobial peptides using peptidomimetics, which provide facile access to identify the key factors involving in the destruction of pathogens through SAR study, a series of simple and short peptidomimetics consisting of multi-Lys residues and lipophilic moiety have been prepared and found to be active against several Gram-negative and Gram-positive bacteria containing methicillin-resistant Staphylococcus aureus (MRSA) without hemolytic activity. Based on the SAR studies, we found that hydrophobicity, +5 charges of multiple Lys residues, hydrocarbon tail lengths and cyclohexyl group were crucial for antimicrobial activity. Furthermore, membrane depolarization, dye leakage, inner membrane permeability and time-killing kinetics revealed that bacterial-killing mechanism of our peptidomimetics is different from the membrane-targeting AMPs (e. g. melittin and SMAP-29) and implied our peptidomimetics might kill bacteria via the intracellular-targeting mechanism as done by buforin-2.


Short peptidomimetics Antimicrobial activity Hemolytic activity Structure–activity relationship (SAR) study Poly-Lys peptidomimetics 



Antimicrobial peptides


Trifluoroacetic acid


3,3′-Dipropylthiadicarbocyanine iodide




Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry


Reverse-phase high-performance liquid chromatography


Colony-forming unit


Minimal inhibitory concentration


Large unilamellar vesicles


Methicillin-resistant Staphylococcus aureus



This work was supported in part by Korea Basic Science Institute’s research grant T34418 (J.K.B), the Next-Generation BioGreen 21 Program (#PJ009594, N.H.K), Rural Development Administration, Republic of Korea and Korea Research Foundation funded by the Korean Government (KRF-2011-0009039 to S.Y.S.).

Conflict of interest

The authors have declared that there is no conflict of interest.


  1. Ahn M, Murugan RN, Jacob B, Hyun JK, Cheong C, Hwang E, Park HN, Seo JH, Srinivasrao G, Lee KS, Shin SY, Bang JK (2013) Discovery of novel histidine-derived lipo-amino acids: applied in the synthesis of ultra-short antimicrobial peptidomimetics having potent antimicrobial activity, salt resistance and protease stability. Eur J Med Chem 68:10–18PubMedCrossRefGoogle Scholar
  2. Alonso A, Garcia-del Portillo F (2004) Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol 7:181–191PubMedGoogle Scholar
  3. Ando S, Mitsuyassu K, Soeda Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H (2010) Structure–activity relationship of indolicin, a Trp-rich antibacterial peptide. J Pept Sci 16:171–177PubMedGoogle Scholar
  4. Bals R, Wilson JM (2003) Cathelicidins-a family of multifunctional antimicrobial peptides. Cell Mol Life Sci 60:711–720PubMedCrossRefGoogle Scholar
  5. Bocheva A, Nocheva H, Pavlov N, Todorov P, Calmes M, Martinez J, Naydenova E (2013) Synthesis and analgesic effects of novel β2-tryptophan hexapeptide analogs. Amino Acids 45:983–988Google Scholar
  6. Bush K, Courvalin P, Dantas G, Davies J, Eisentein B, Huovine P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lehner SA (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896PubMedCrossRefGoogle Scholar
  7. Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 105:2794–2799PubMedCentralPubMedCrossRefGoogle Scholar
  8. Findlay B, Mookherjee N, Schweizer F (2013) Ultrashort cationic lipopeptides and lipopeptoids selectively induce cytokine production in macrophages. PLoS One 8:e54280PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720PubMedCrossRefGoogle Scholar
  10. Hancock R, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hernandez-Gordillo V, Geisler I, Chmielewski J (2014) Dimeric unnatural polyproline-rich peptide with enhanced antibacterial activity. Bioorg Med Chem Lett 24:556–559PubMedCrossRefGoogle Scholar
  12. Jacob B, Kim Y, Hyun JK, Park IS, Bang JK, Shin SY (2014) Bacterial killing mechanism of sheep myeloid antimicrobial peptide-18 (SMAP-18) and its Trp-substituted analogue with improved cell selectivity and reduced mammalian cell toxicity. Amino Acids 46:187–198PubMedCrossRefGoogle Scholar
  13. Kim J-K, Lee E, Shin S, Jeong K-W, Lee J-Y, Bae S-Y, Kim S-H, Lee J, Kim S, Lee D, Hwang J-S, Kim Y (2011) Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly Papilio xuthus. J Biol Chem 286:41296–41311PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lewis K (2012) Recover the lost art of drug discovery. Nature 485:439–440PubMedCrossRefGoogle Scholar
  15. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002PubMedCentralPubMedCrossRefGoogle Scholar
  16. Murugan RN, Jacob B, Kim EH, Ahn M, Seo JH, Cheong C, Hyun JK, Lee KS, Shin SY, Bang JK (2013a) Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Bioorg Med Chem Lett 23:4633–4636PubMedCrossRefGoogle Scholar
  17. Murugan RN, Jacob B, Ahn M, Hwang E, Sohn H, Park HN, Lee E, Seo JH, Cheong C, Nam KY, Hyun JK, Jeong KW, Kim Y, Shin SY, Bang JK (2013b) De novo design and synthesis of ultra-short peptidomimetics having dual antimicrobial and anti-inflammatory activities. PLoS One 8:e80025PubMedCentralPubMedCrossRefGoogle Scholar
  18. Nguyen LT, Chau JK, Perry NA, Boer LD, Zaat SA, Vogel HJ (2010) Serum stability of short tryptophan-and arginine-rich antimicrobial peptide analogs. PLoS One 5:e12684PubMedCentralPubMedCrossRefGoogle Scholar
  19. O’Connell KM, Hodggkinso JT, Sore HF, Welch M, Salmon GP, Spring DR (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed Engl 52:10706–10733PubMedCrossRefGoogle Scholar
  20. Sharma RK, Reddy RP, Tegge W, Jain R (2009) Discovery of Trp-His and His-Arg analogues as new structural classes of short antimicrobial peptides. J Med Chem 52:7421–7431PubMedCrossRefGoogle Scholar
  21. Tossi A, Sandri L, Gianqaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30PubMedCrossRefGoogle Scholar
  22. Yu H, Huang KC, Yip BS, Tu CH, Chen HL, Cheng HT, Cheng JW (2010) Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem 11:2273–2282PubMedCrossRefGoogle Scholar
  23. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Mija Ahn
    • 1
  • Binu Jacob
    • 2
    • 6
  • Pethaiah Gunasekaran
    • 3
  • Ravichandran N. Murugan
    • 1
  • Eun Kyoung Ryu
    • 1
  • Ga-hyang Lee
    • 4
  • Jae-Kyung Hyun
    • 5
  • Chaejoon Cheong
    • 1
  • Nam-Hyung Kim
    • 3
  • Song Yub Shin
    • 2
    • 6
    Email author
  • Jeong Kyu Bang
    • 1
    Email author
  1. 1.Division of Magnetic ResonanceKorea Basic Science InstituteOchangRepublic of Korea
  2. 2.Department of Bio-Materials, Graduate SchoolChosun UniversityGwangjuRepublic of Korea
  3. 3.Molecular Embryology Laboratory, Department of Animal SciencesChungbuk National UniversityCheongjuRepublic of Korea
  4. 4.College of PharmacyChungbuk National UniversityCheongjuRepublic of Korea
  5. 5.Division of Electron Microscopic ResearchKorea Basic Science InstituteDaejeonRepublic of Korea
  6. 6.Department of Cellular and Molecular Medicine, School of MedicineChosun UniversityGwangjuRepublic of Korea

Personalised recommendations