Amino Acids

, Volume 46, Issue 9, pp 2091–2104 | Cite as

Microreactors for peptide synthesis: looking through the eyes of twenty first century !!!

  • Suhas Ramesh
  • Prabhakar Cherkupally
  • Beatriz G. de la Torre
  • Thavendran Govender
  • Hendrik G. Kruger
  • Fernando AlbericioEmail author
Minireview Article


The twenty first century has witnessed several advances in synthetic chemistry, among them microreactors. It is expected that these devices will have a considerable impact on synthetic organic chemistry since they offer a wide range of applications in various fields. Perhaps the synthesis of peptides deserves mention in this regard as these molecules are emerging as therapeutics and offer several advantages over the so-called small molecules. This minireview does not aim to address microreactors in detail, but explains various peptide synthesis methods that involve microfluidic techniques, highlighting the need for further improvement and expansion of microdevices/microreactors.


Microreactors Continuous flow Peptide synthesis Applications Amide formation 


Conflict of interest

Authors declare that they have no conflict of interest.


  1. AlTpTe C, Vulpescu L, Cousseau P, Renaud P, Maurer R, Renken A (2000) IMRET 4: 4th International Conference on Microreaction Technology (Atlanta, USA), American Institute of Chemical Engineers Topical Conference Proceedings, p 71Google Scholar
  2. Anzenbacher P, Palacios MA (2009) Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nat Chem 1:80–86PubMedGoogle Scholar
  3. Baxendale IR, Ley SV, Smith CD, Tranmer GK (2006) A flow reactor process for the synthesis of peptides utilizing immobilized reagents, scavengers and catch and release protocols. Chem Commun 14:4835–4837CrossRefGoogle Scholar
  4. Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26PubMedCrossRefGoogle Scholar
  5. Chan WC, Bycroft BW, Evans DJ, White PD (1995) A novel 4-aminobenzyl ester-based carboxy-protecting group for synthesis of atypical peptides by Fmoc-But solid-phase chemistry. J Chem Soc Chem Commun 2209–2210Google Scholar
  6. Cheng RP, Gellman SH, DeGrado WF (2001) β-Peptides: from structure to function. Chem Rev 101:3219–3232PubMedCrossRefGoogle Scholar
  7. Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48:1590–1595CrossRefGoogle Scholar
  8. Christensen PD, Johnson SWP, McCreedy T, Skeleton V, Wilson NG (1998) The fabrication of micro-porous silica structures for microreactor technology. Anal Commun 35:341–343Google Scholar
  9. Coste J, Frérot E, Jouin P (1991) Oxybenzotriazole free peptide coupling reagents for N-methylated amino acids. Tetrahedron Lett 32:1967–1970Google Scholar
  10. de Mello A, Wootton R (2002) But what is it good for? Applications of microreactor technology for the fine chemical industry. Lab Chip 2:7N–13NPubMedGoogle Scholar
  11. Ehrfeld (1995) DECHEMA-monographs, DECHEMA, Frankfurt, p 132Google Scholar
  12. Ehrfeld W, Lehr H (1995) Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics. Radiat Phys Chem 45:349–365Google Scholar
  13. Ehrfeld W, Hessel V, Haverkamp V (1999) Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley, WeinheimGoogle Scholar
  14. Ehrfeld W, Hessel V, LDwe H (2000a) Microreactors. Wiley, WeinheimGoogle Scholar
  15. Ehrfeld W, Hessel V, Kiesewalter S, LDwe H, Richter T, Schiewe J (2000) Microreaction Technology—IMRET 3, In: Ehrfeld W (ed) Proceedings of the 3rd International Conference on Microreaction Technology, Springer, Berlin, p 14Google Scholar
  16. Ehrfeld W, Hessel V, Lowe H (2000c) Microreactors: new technology for modern chemistry. Wiley, WeinheimGoogle Scholar
  17. Fletcher PDI, Haswell SJ, Paunov VN (1999) Theoretical considerations of chemical reactions in microreactors operating under electroosmotic and electrophoretic control. Analyst 124:1273–1282Google Scholar
  18. Fletcher PDI, Haswell SJ, Pombo-Villar E, Warrington BH, Watts P, Wong SYF, Zhang X (2002) Microreactors: principles and applications in organic synthesis. Tetrahedron 58:4735–4757Google Scholar
  19. Flogel O, Codee JDC, Seebach D, Seeberger PH (2006) Microreactor synthesis of β-peptides. Angew Chem Int Ed 45:7000–7003Google Scholar
  20. Fredrickson CK, Fan ZH (2004) Macro-to-micro interfaces for microfluidic devices. Lab Chip 4:526–533PubMedGoogle Scholar
  21. Fuse S, Mifune Y, Takahashi T (2014) Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor. Angew Chem Int Ed 53:851–855Google Scholar
  22. Gavriilidis A, Angeli P, Cao E, Yeong KK, Wan YSS (2002) Technology and applications of microengineered reactors. Trans Inst Chem Eng Part A 80:3–30Google Scholar
  23. Geyer K, Codee JDC, Seeberger PH (2006) Microreactors as tools for synthetic chemists-the chemists’ round bottomed flask of the 21st century? Chem Eur J 12:8434–8442PubMedGoogle Scholar
  24. Grover WH, von Muhlen MG, Manalis SR (2008) Teflon films for chemically-inert microfluidic valves and pumps. Lab Chip 8:913–918PubMedCentralPubMedGoogle Scholar
  25. Hessel V, Lowe H (2002) Mikroverfahrenstechnik: komponenten—Anlagenkonzeption—Anwenderakzeptanz—Teil 2. Chem Ing Tech 74:185–207Google Scholar
  26. Hessel V, Hardt S, Lowe H (2004) Chemical micro process engineering: Fundamentals, modelling and reactions. Wiley, WeinheimGoogle Scholar
  27. Hessel V, Lçwe H, Schçnfeld (2005a) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501Google Scholar
  28. Hessel V, Lob P, Lowe H (2005b) Development of microstructured reactors to enable organic synthesis rather than subduing chemistry. Curr Org Chem 9:765–787Google Scholar
  29. Hessel V, Kolb G, de Bellefon C (2005c) Preface Catal Today 110:1Google Scholar
  30. Jahnisch K, Hessel V, Lowe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed 43:406–446Google Scholar
  31. Jebrail MJ, Nr AHC, Rai V, Hili R, Yudin AK, Wheeler AR (2010) Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew Chem Int Ed 49:8625–8629Google Scholar
  32. Jensen KF (2001) Microreaction engineering—is small better? Chem Eng Sci 56:293–303Google Scholar
  33. Jensen KF (2006) Silicon-based microchemical systems: characteristics and applications. MRS Bull 31:101–107Google Scholar
  34. Jäckel K-P (1996) Microtechnology: application opportunities in the chemical industry. In: Ehrfeld W (ed) Microsystem technology for chemical and biological microreactors. DECHEMA Monographs, vol 132, VCH, Weinheim, p 29Google Scholar
  35. Kates SA, Nuria A, Sole M, Beyermann M, Barany G, Albericio F (1996) Optimized preparation of deca(l-alanyl)-l-valinamide by 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis on polyethylene glycol-polystyrene (PEG-PS) graft supports with 1,8-diazobicyclo [5.4.0]-undec-7-ene (DBU) deprotection. Pept Res 9:106–113PubMedGoogle Scholar
  36. Kikutani Y, Horiuchi T, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2:188–192PubMedGoogle Scholar
  37. Kiwi-Minsker L, Renken A (2005) Microstructured reactors for catalytic reactions. Catal Today 110:2–14Google Scholar
  38. Knitter R, Gohring D, Risthaus P, Hausselt J (2001) Microfabrication of ceramic microreactors. Microsyst Technol 7:85–90Google Scholar
  39. Kockmann N, Brand O, Fedder GK (2006) Micro process engineering. Wiley, WeinheimGoogle Scholar
  40. Kolb G, Hessel V (2004) Microstructured reactors for gas phase reactions. Chem Eng J 98:1–38Google Scholar
  41. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554PubMedGoogle Scholar
  42. Lerou JJ, Harold MP, Ryley J, Ashmead J, O’Brien TC, Johnson M, Perrotto J, Blaisdell CT, Rensi TA, Nyquist J (1996) Microsystem technology for chemical and biological microreactors, DECHEMA Monographs, In: Ehrfeld W (ed) vol. 132, VCH, Weinheim, p 51Google Scholar
  43. Li D (2004) Electrokinetics in microfluidics, vol 2. Elsevier, AmsterdamGoogle Scholar
  44. Lohder W, Bergann L (1986) Akademie der Wissenschaften der DDR, DD 246257Google Scholar
  45. Lowe H, Ehrfeld W, Hessel V, Richter T, Schiewe J (2000) IMRET 4: 4th International Conference on Microreaction Technology (Atlanta, USA), American Institute of Chemical Engineers Topical Conference Proceedings, p 31Google Scholar
  46. Martynova L, Locascio LE, Gaitan M, Kramer GW, Christensen RG, MacCrehan WA (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789PubMedGoogle Scholar
  47. McCormick RM, Nelson RJ, Alonso-Amigo MG, Benvegnu J, Hooper HH (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem 69:2626–2630PubMedGoogle Scholar
  48. McCreedy T (2000) Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems. Trac Trends Anal Chem 19:396–401Google Scholar
  49. McCreedy T (2001) Rapid prototyping of glass and PDMS microstructures for micro total analytical systems and micro chemical reactors by microfabrication in the general laboratory. Anal Chim Acta 427:39–43Google Scholar
  50. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40PubMedGoogle Scholar
  51. Merrifield RB (1963) Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154Google Scholar
  52. Pennemann H, Watts P, Haswell SJ, Hessel V, Lçwe H (2004) Benchmarking of microreactor applications. Org Process Res Dev 8:422–439Google Scholar
  53. Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH (2005) Microreactor-based reaction optimization in organic chemistry—glycosylation as a challenge. Chem Commun 5:578–580Google Scholar
  54. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM (2004) Solvent-resistant photocurable “Liquid Teflon” for microfluidic device fabrication. J Am Chem Soc 126:2322–2323PubMedGoogle Scholar
  55. Schubert K, Bier W, Linder G, Seidel D (1989) Herstellung und test von kompakten mikrowarmeubertragern. Chem Ing Tech 61:172–173Google Scholar
  56. Schubert K, Bier W, Brandner J, Fichtner M, Franz C, Linder G (1998) Process Miniaturization—IMRET 2: 2nd International Conference on Microreaction Technology (New Orleans, USA), Topical Conference Preprints In: Ehrfeld W, Rinard IH, Wegeng RS (eds.), American Institute of Chemical Engineers, p 88Google Scholar
  57. Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for applications in thermal and chemical process engineering. Microscale Thermophys Eng 5:17–39Google Scholar
  58. Schwalbe T, Autze V, Wille G (2002) Chemical synthesis in microreactors. Chimia 56:636–646Google Scholar
  59. Schwalbe T, Autze V, Hohmann M, Stirner W (2004) Novel innovation systems for a cellular approach to continuous process chemistry from discovery to market. Org Process Res Dev 8:440–454Google Scholar
  60. Seebach D, Overhand M, Kuhnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996) β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta 79:913–941Google Scholar
  61. Thayer AM (2005) Harnessing microreactions. Chem Eng News 83:43–52Google Scholar
  62. Valeur E, Bradley M (2005) PS-IIDQ: an efficient polymer-supported amide coupling reagent. Chem Commun 7:1164–1166Google Scholar
  63. Veser G (2001) Experimental and theoretical investigation of H2O oxidation in a high-temperature catalytic microreactor. Chem Eng Sci 56:1265–1273Google Scholar
  64. Veser G, Friedrich G, Freygang M, Zengerle R (2000) Microreaction Technology—IMRET 3: Proceedings of the 3rd International Conference on Microreaction Technology In: Ehrfeld W (ed.), Springer, Berlin, p 674Google Scholar
  65. Wade JD, Bedford J, Sheppard C, Tregear GW (1991) DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept Res 4:194–199PubMedGoogle Scholar
  66. Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246PubMedGoogle Scholar
  67. Watts P, Wiles C (2007) Recent advances in synthetic micro reaction technology. Chem Commun 2007:443–467Google Scholar
  68. Watts P, Wiles C, Haswell SJ, Pombo-Villar E, Styring P (2001) The synthesis of peptides using micro reactors. Chem Commun 11:990–991Google Scholar
  69. Watts P, Wiles C, Haswell SJ, Pombo-Villar E (2002a) Solution phase synthesis of β-peptides using micro reactors. Tetrahedron 58:5427–5439Google Scholar
  70. Watts P, Charlotte SJ, Haswell E, Pombo-Villar E (2002b) Investigation of racemisation in peptide synthesis within a micro reactor. Lab Chip 2:141–144PubMedGoogle Scholar
  71. Wegeng RW, Call CJ, Drost MK (1996) American Institute of Chemical Engineers, Spring National Meeting, New Orleans, USA, p 1Google Scholar
  72. Willis PA, Hunt BD, White VE, Lee MC, Ikeda M, Bae S, Pelletier MJ, Grunthaner FJ (2007) Monolithic Teflon® membrane valves and pumps for harsh chemical and low-temperature use. Lab Chip 7:1469–1474PubMedGoogle Scholar
  73. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184Google Scholar
  74. Yoon TH, Park SH, Min KI, Zhang XL, Haswell SJ, Kim DP (2008) Novel inorganic polymer derived microreactors for organic microchemistry applications. Lab Chip 8:1454–1459PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Suhas Ramesh
    • 1
  • Prabhakar Cherkupally
    • 1
  • Beatriz G. de la Torre
    • 1
    • 2
  • Thavendran Govender
    • 1
  • Hendrik G. Kruger
    • 1
  • Fernando Albericio
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of Chemistry, Yachay Tech, Yachay City of KnowledgeUrcuquiEcuador
  3. 3.School of Chemistry and Physics, University of KwaZulu-NatalDurbanSouth Africa
  4. 4.Institute for Research in Biomedicine (IRB)BarcelonaSpain
  5. 5.CIBER-BBNBarcelonaSpain
  6. 6.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain

Personalised recommendations