Skip to main content

Advertisement

Log in

Synthesis and preliminary biological evaluation of O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET) as a potential cationic amino acid PET tracer for tumor imaging

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

[18F]FDG:

2-[18F]fluoro-2-deoxy-d-glucose

mTOR:

Mammalian target of rapamycin

LAT1:

System L amino acid transporter

[18F]FET:

O-(2-[18F]fluroethyl)-l-tyrosine

CAT:

Cationic amino acid transporter family

NO:

Nitric oxide

[18F]AFETP:

(S)-2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid

[18F]FEMAET:

O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine

DEAD:

Diethyl azodicarboxylate

KCN:

Potassium cyanide

DIPEA:

Diisopropylethylamine

DAST:

Diethylaminosulfurtrifluoride

CBr4 :

Carbon tetrabromide

PPh3 :

Triphenylphosphine

[18F]FDOPA:

l-3,4-Dihydroxy-6-[18F]fluorophenylalanine

EBSS:

EARLE balanced salt solution

References

  • Bacherikov VA, Chou TC, Dong HJ, Zhang X, Chen CH, Lin YW, Tsai TJ, Lee RZ, Liu LF, Su TL (2005) Potent antitumor 9-anilinoacridines bearing an alkylating N-mustard residue on the anilino ring: synthesis and biological activity. Bioorg Med Chem 13(12):3993–4006. doi:10.1016/j.bmc.2005.03.057

    Article  CAS  PubMed  Google Scholar 

  • Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability (vol 372, pg 555, 2003). Biochem J 373:999

  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. P Natl Acad Sci USA 96(21):12079–12084. doi:10.1073/pnas.96.21.12079

    Article  CAS  Google Scholar 

  • Boeckman RK Jr, Miller Y, Savage D, Summerton JE (2011) Total synthesis of a possible specific and effective acid-targeted cancer diagnostic, a camphor derived bis-N-oxide dimer. Tetrahedron Lett 52(17):2243–2245

    Article  CAS  Google Scholar 

  • Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL (1959) Uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 19(10):1030–1039

    CAS  PubMed  Google Scholar 

  • Closs EI (2002) Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hy 11(1):99–107. doi:10.1097/00041552-200201000-00015

    Article  Google Scholar 

  • Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membrane Biol 213(2):67–77. doi:10.1007/s00232-006-0875-7

    Article  CAS  Google Scholar 

  • Comer JEA (2007) Ionization constants and ionization profiles. In: Testa B, Van de Waterbeemd H (eds) Comprehensive Medicinal Chemistry II, vol 5. Elsevier, Amsterdam, pp 357–397

  • Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of argininosuccinate synthetase deficiency in human cancers—a method for identifying cancers sensitive to arginine deprivation. Cancer 100(4):826–833. doi:10.1002/Cncr.20057

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15(4):254–266. doi:10.1016/j.semcancer.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Therapeut 121(1):29–40. doi:10.1016/j.pharmthera.2008.09.005

    Article  CAS  Google Scholar 

  • Gupta N, Miyauchi S, Martindale RG, Herdman AV, Podolsky R, Miyake K, Mager S, Prasad PD, Ganapathy ME, Ganapathy V (2005) Upregulation of the amino acid transporter ATB(0,+) (SLC6A14) in colorectal cancer and metastasis in humans. Bba Mol Basis Dis 1741(1–2):215–223. doi:10.1016/j.bbadis.2005.04.002

    Article  CAS  Google Scholar 

  • Gupta N, Prasad PD, Ghamande S, Moore-Martin P, Herdman AV, Martindale RG, Podolsky R, Mager S, Ganapathy ME, Ganapathy V (2006) Up-regulation of the amino acid transporter ATB(0, +) (SLC6A14) in carcinoma of the cervix. Gynecol Oncol 100(1):8–13. doi:10.1016/j.ygyno.2005.08.016

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Vina JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136(1):218s–226s

    CAS  PubMed  Google Scholar 

  • Herzig J, Nudelman A, Gottlieb HE, Fischer B (1986) Studies in sugar chemistry 2. A simple method for O-deacylation of polyacylated sugars. J Org Chem 51(5):727–730

    Article  CAS  Google Scholar 

  • Honer M, Bruhlmeier M, Missimer J, Schubiger AP, Ametamey SM (2004) Dynamic imaging of striatal D-2 receptors in mice using quad-HIDAC PET. J Nucl Med 45(3):464–470

    CAS  PubMed  Google Scholar 

  • Kaim AH, Weber B, Kurrer MO, Westera G, Schweitzer A, Gottschalk J, von Schulthess GK, Buck A (2002) F-18-FDG and F-18-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol I 29(5):648–654. doi:10.1007/s00259-002-0780-y

    Article  CAS  Google Scholar 

  • Kanai Y, Fukasawa Y, Cha SH, Segawa H, Chairoungdua A, Kim DK, Matsuo H, Kim JY, Miyamoto K, Takeda E, Endou H (2000) Transport properties of a system y(+)L neutral and basic amino acid transporter—insights into the mechanisms of substrate recognition. J Biol Chem 275(27):20787–20793. doi:10.1074/jbc.M000634200

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy-Thandavan S, Gurav A, Gnanaprakasam JP, Singh N, Schoenlein PV, Prasad PD, Thangaraju M, Ganapathy V (2011) SLC6A14 (ATB(0, +)) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem 286(36):31830–31838. doi:10.1074/jbc.M111.229518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DK, Ahn SG, Park JC, Kanai Y, Endou H, Yoon JH (2004) Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in oral squamous cell carcinoma and its precusor lesions. Anticancer Res 24(3A):1671–1675

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, Nagane M (2008) Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery 62(2):493–503. doi:10.1227/01.Neu.0000255470.75752.02

    Article  PubMed  Google Scholar 

  • Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP, de Vries EGE, Jager PL (2009) Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hemat 71(3):199–213. doi:10.1016/j.critrevonc.2009.02.009

    Article  Google Scholar 

  • Krämer SD, Mu L, Müller A, Keller C, Kuznetsova OF, Schweinsberg C, Franck D, Müller C, Ross TL, Schibli R, Ametamey SM (2012) 5-(2-18F-fluoroethoxy)-l-tryptophan as a substrate of system L transport for tumor imaging by PET. J Nucl Med 53(3):434–442. doi:10.2967/jnumed.111.096289

    Article  PubMed  Google Scholar 

  • Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D (2006) O-(2-[(18)F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33(3):287–294. doi:10.1016/j.nuemedbio.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • Lee TS, Ahn SH, Moon BS, Chun KS, Kang JH, Cheon GJ, Choi CW, Lim SM (2009) Comparison of F-18-FDG, F-18-FET and F-18-FLT for differentiation between tumor and inflammation in rats. Nucl Med Biol 36(6):681–686. doi:10.1016/j.nucmedbio.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Lind DS (2004) Arginine and cancer. J Nutr 134(10):2837s–2841s

    CAS  PubMed  Google Scholar 

  • McConathy J, Goodman MM (2008) Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metast Rev 27(4):555–573. doi:10.1007/s10555-008-9154-7

    Article  Google Scholar 

  • McConathy J, Zhou D, Shockley SE, Jones LA, Griffin EA, Lee H, Adams SJ, Mach RH (2010) Click synthesis and biologic evaluation of (R)- and (S)-2-amino-3-[1-(2-[F-18]Fluoroethyl)-1H-[1,2,3]Triazol-4-yl]propanoic acid for brain tumor imaging with positron emission tomography. Mol Imaging 9(6):329–342. doi:10.2310/7290.2010.00025

    CAS  PubMed  Google Scholar 

  • McConathy J, Yu WP, Jarkas N, Seo W, Schuster DM, Goodman MM (2012) Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 32(4):868–905. doi:10.1002/Med.20250

    Article  CAS  PubMed  Google Scholar 

  • Müller A, Chiotellis A, Keller C, Ametamey SM, Schibli R, Mu L, Krämer SD (2013) Imaging tumour ATB0,+ transport activity by PET with the cationic amino acid O-2((2-[18F]fluoroethyl)methyl-amino)ethyltyrosine. Mol Imaging Biol. doi:10.1007/s11307-013-0711-2

  • Nakanishi T, Tamai I (2011) Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci Us 100(9):3731–3750. doi:10.1002/Jps.22576

    Article  CAS  Google Scholar 

  • Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, Matsuo H, Kanai Y, Endou H (2006) L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer 119(3):484–492. doi:10.1002/Ijc.21866

    Article  CAS  PubMed  Google Scholar 

  • Neels OC, Koopmans KP, Jager PL, Vercauteren L, van Waarde A, Doorduin J, Timmer-Bosscha H, Brouwers AH, de Vries EGE, Dierckx RAJO, Kema IP, Elsinga PH (2008) Manipulation of [C-11]-5-hydroxytryptophan and 6-[F-18]fluoro-3,4-dihydroxy-l-phenylalanine accumulation in neuroendocrine tumor cells. Cancer Res 68(17):7183–7190. doi:10.1158/0008-5472.Can-08-0095

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Hirota T, Kingery DA, Nagasawa H (2009) Synthesis of a fluorine-substituted puromycin derivative for Bronsted studies of ribosomal-catalyzed peptide bond formation. J Org Chem 74(6):2609–2612. doi:10.1021/jo802611t

    Article  CAS  PubMed  Google Scholar 

  • Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49:43s–63s. doi:10.2967/jnumed.107.045930

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Daniels GA, Boerner P, Lin J (1988) Neutral amino-acid transport-systems in animal-cells—potential targets of oncogene action and regulators of cellular growth. J Membrane Biol 104(1):1–20. doi:10.1007/Bf01871898

    Article  CAS  Google Scholar 

  • Savle PS, Medhekar RA, Kelley EL, May JG, Watkins SF, Fronczek FR, Quinn DM, Gandour RD (1998) Change in the mode of inhibition of acetylcholinesterase by (4-nitrophenyl)sulfonoxyl derivatives of conformationally constrained choline analogues. Chem Res Toxicol 11(1):19–25. doi:10.1021/tx970019o

    CAS  PubMed  Google Scholar 

  • Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34(4):274–292. doi:10.1053/j.semnuclmed.2004.06.004

    Article  PubMed  Google Scholar 

  • Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19(1):61–77

    Article  CAS  PubMed  Google Scholar 

  • Silhar P, Pohl R, Votruba I, Hocek M (2005) The first synthesis and cytostatic activity of novel 6-(fluoromethyl)purine bases and nucleosides. Org Biomol Chem 3(16):3001–3007. doi:10.1039/b508122j

    Article  CAS  PubMed  Google Scholar 

  • Sloan JL, Mager S (1999) Cloning and functional expression of a human Na+ and Cl dependent neutral and cationic amino acid transporter B0+. J Biol Chem 274(34):23740–23745. doi:10.1074/jbc.274.34.23740

    Article  CAS  PubMed  Google Scholar 

  • Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms and structure, 6th edn. Wiley Interscience, Hoboken, pp 355–394

    Google Scholar 

  • Solingapuram Sai K, Huang CF, Yuan LY, Zhou D, Garbow J, Rich K, Mach R, McConathy J (2011) Comparison of the non-natural amino acid, (S)-[F-18]AFETP, and [F-18]FDG for brain tumor imaging in the mouse DBT model of glioma. J Label Compd Radiopharm 54:S33–S33

    Article  Google Scholar 

  • Sundin A, Eriksson B, Bergstrom M, Langstrom B, Oberg K, Orlefors H (2004) PET in the diagnosis of neuroendocrine tumors. Ann Ny Acad Sci 1014:246–257. doi:10.1196/annals.1294.027

    Article  CAS  PubMed  Google Scholar 

  • Sundin A, Garske U, Orlefors H (2007) Nuclear imaging of neuroendocrine tumours. Best Pract Res Cl En 21(1):69–85. doi:10.1016/j.beem.2006.12.003

    Article  CAS  Google Scholar 

  • Tamai S, Masuda H, Ishii Y, Suzuki S, Kanai Y, Endou H (2001) Expression of l-type amino acid transporter 1 in a rat model of liver metastasis: positive correlation with tumor size. Cancer Detect Prev 25(5):439–445

    CAS  PubMed  Google Scholar 

  • Testa B, Kramer SD (2007) The biochemistry of drug metabolism—an introduction—Part 2. Redox reactions and their enzymes. Chem Biodivers 4(3):257–405. doi:10.1002/cbdv.200790032

    Article  CAS  PubMed  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflug Arch Eur J Phy 447(5):532–542. doi:10.1007/s00424-003-1086-z

    Article  CAS  Google Scholar 

  • Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Ph 281(4):C1077–C1093

    CAS  Google Scholar 

  • Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G (1999) Synthesis and radiopharmacology of O-(2-[F-18]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40(1):205–212

    CAS  PubMed  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433. doi:10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Claudia Keller for the excellent technical help in conducting in vitro and in vivo experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjing Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiotellis, A., Müller, A., Weyermann, K. et al. Synthesis and preliminary biological evaluation of O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET) as a potential cationic amino acid PET tracer for tumor imaging. Amino Acids 46, 1947–1959 (2014). https://doi.org/10.1007/s00726-014-1754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1754-7

Keywords

Navigation