Skip to main content

Advertisement

Log in

Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine has been reported to influence bone metabolism, but the role of taurine on osteogenic differentiation of human mesenchymal stem cells (hMSCs) remains unclear. In the present study, we investigated the effect of taurine on osteogenic differentiation of hMSCs. The results showed that taurine increased the alkaline phosphatase (ALP) activity and mineralized nodules in hMSCs induced by osteogenic induced medium. Meanwhile, RT-PCR analysis showed that taurine up-regulated the mRNA expression of ALP, osteopontin, Runt-related transcription factor 2 (Runx2) and Osterix in a dose-dependent manner. Furthermore, taurine induced activation of extracellular signal regulated kinase (ERK) and pretreatment with the ERK inhibitor U0126 abolished the taurine-induced osteogenesis of hMSCs. Taken together, our study reveals that taurine promotes the osteogenesis of hMSCs by activating the ERK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benisch P, Schilling T, Klein-Hitpass L et al (2012) The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7(9):e45142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao L, Liu G, Gan Y et al (2012) The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats. Biomaterials 33(20):5076–5084

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Chang KJ (2013) Effect of dietary taurine and arginine supplementation on bone mineral density in growing female rats. Adv Exp Med Biol 776:335–345

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, DiMarco NM (2009) The effects of dietary taurine supplementation on bone mineral density in ovariectomized rats. Adv Exp Med Biol 643:341–349

    Article  CAS  PubMed  Google Scholar 

  • Dalle Carbonare L, Valenti MT, Zanatta M et al (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60(11):3356–3365

    Article  PubMed  Google Scholar 

  • Deal C (2009) Potential new drug targets for osteoporosis. Nat Clin Pract Rheumatol 5(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Li JM, Liao XB et al (2012) Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway. Amino Acids 43(4):1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Xiao G, Jiang D et al (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5):709–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan M, Yao W, Liu R et al (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 18(3):456–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison G, Shapiro IM, Golub EE (1995) The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Miner Res 10(4):568–573

    Article  CAS  PubMed  Google Scholar 

  • Jeon SH, Lee MY, Kim SJ et al (2007) Taurine increases cell proliferation and generates an increase in [Mg2+]i accompanied by ERK 1/2 activation in human osteoblast cells. FEBS Lett 581(30):5929–5934

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H et al (2009) Approaches to the targeting of treatment for osteoporosis. Nat Rev Rheumatol 5(8):425–431

    Article  CAS  PubMed  Google Scholar 

  • Ke HZ, Richards WG, Li X et al (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 33(5):747–783

    Article  CAS  PubMed  Google Scholar 

  • Lai CF, Chaudhary L, Fausto A et al (2001) Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem 276(17):14443–14450

    CAS  PubMed  Google Scholar 

  • Liao XB, Zhou XM, Li JM et al (2008) Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway. Amino Acids 34(4):525–530

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim H, Kim SJ (2001) Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem Pharmacol 62(8):1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Pino AM, Rosen CJ, Rodríguez JP (2012) In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 45(3):279–287

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Prall WC, Haasters F, Heggebö J et al (2013) Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation. Biochem Biophys Res Commun 440(4):617–622

    Article  CAS  PubMed  Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman MM, Park HM, Kim SJ et al (2011) Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. Am J Hypertens 24(5):574–581

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC et al (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2

    Article  PubMed Central  PubMed  Google Scholar 

  • Terauchi A, Nakazaw A, Johkura K et al (1998) Immunohistochemical localization of taurine in various tissues of the mouse. Amino Acids 15(1–2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chi D, Su G et al (2011) Determination of taurine in biological samples by high-performance liquid chromatography using 4-fluoro-7-nitrobenzofurazan as a derivatizing agent. Biomed Environ Sci 24(5):537–542

    CAS  PubMed  Google Scholar 

  • Wang X, Wang Y, Gou W et al (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498

    Article  PubMed  Google Scholar 

  • Wennberg C, Hessle L, Lundberg P et al (2000) Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res 15(10):1879–1888

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  CAS  PubMed  Google Scholar 

  • Yao KL, Todescan R Jr, Sodek J (1994) Temporal changes in matrix protein synthesis and mRNA expression during mineralized tissue formation by adult rat bone marrow cells in culture. J Bone Miner Res 9:231–240

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Xie XH, Wang XL et al (2012) Icaritin, an exogenous phytomolecule, enhances osteogenesis but not angiogenesis—an in vitro efficacy study. PLoS One 7(8):e41264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan LQ, Xie H, Luo XH et al (2006) Taurine transporter is expressed in osteoblasts. Amino Acids 31(2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Yuan LQ, Lu Y, Luo XH et al (2007) Taurine promotes connective tissue growth factor (CTGF) expression in osteoblasts through the ERK signal pathway. Amino Acids 32(3):425–430

    Article  CAS  PubMed  Google Scholar 

  • Yuan LQ, Liu W, Cui RR et al (2010) Taurine inhibits osteoclastogenesis through the taurine transporter. Amino Acids 39(1):89–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank financial support from National Natural Science Foundation of China (30772768), Natural Science Foundation of Guangdong Province (10152402301000000), Science and Technology Planning Project of Dongguan (2011108102019) and Science and Technology Innovation Fund of Guangdong Medical College (STIF201104).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daohua Xu.

Additional information

C. Zhou and X. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Zhang, X., Xu, L. et al. Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway. Amino Acids 46, 1673–1680 (2014). https://doi.org/10.1007/s00726-014-1729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1729-8

Keywords

Navigation