Skip to main content
Log in

Arginine supplementation and exposure time affects polyamine and glucose metabolism in primary liver cells isolated from Atlantic salmon

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Arginine has been demonstrated to enhance glucose and lipid oxidation in mammals through activation of polyamine turnover. We aimed to investigate how arginine affects energy utilization through polyamine metabolism and whether this effect is time dependent. Primary liver cells were isolated from Atlantic salmon (2.2 kg body weight) fed diets containing 25.5 (low arginine, LA) or 36.1 (high arginine, HA) g arginine/kg dry matter for 12 weeks, to investigate the effect of long-term arginine supplementation. The cells were cultured for 24 h in L-15 medium to which either alpha-difluoromethylornithine (DFMO) or N 1,N 11-diethylnorspermine (DENSPM) was added. Analysis of the medium by nuclear magnetic resonance revealed significant differences between the two dietary groups as well as between cells exposed to DFMO and DENSPM, with decreased glucose, fumarate and lactate concentrations in media of the HA cells. Liver cells from fish fed the HA diet had higher spermidine/spermine-N1-acetyltransferase protein abundance and lower adenosine triphosphate concentration as compared to the LA-fed fish, while gene expression was not affected by either diet or treatment. Primary liver cells isolated from salmon fed a commercial diet and cultured in L-15 media with or without arginine supplementation (1.82 or 3.63 mM) for 48 h, representing short-term effect of arginine supplementation, showed differential expression of genes for apoptosis and polyamine synthesis due to arginine supplementation or inhibition by DFMO. Overall, arginine concentration and exposure time affected energy metabolism and gene regulation more than inhibition or activation of key enzymes of polyamine metabolism, suggesting a polyamine-independent influence of arginine on cellular energy metabolism and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DFMO:

Alpha-difluoromethylornithine

DENSPM:

N 1,N 11-Diethylnorspermine

ODC:

Ornithine decarboxylase

SSAT:

Spermidine/spermine-N1-acetyltransferase

SAMdc:

S-Adenosyl methionine decarboxylase

NO:

Nitric oxide

CPT-1:

Carnitine palmitoyl-transferase-1

AMPK:

5′-Activated protein kinase

ATP:

Adenosine triphosphate

NMR:

Nuclear magnetic resonance

WB:

Western blot

qPCR:

Quantitative real-time polymerase chain reaction

References

  • Andersen SM, Holen E, Aksnes A, Ronnestad I, Zerrahn JE, Espe M (2013) Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar). Br J Nutr 110(11):1968–1977

    Article  PubMed  CAS  Google Scholar 

  • Andersen SM, Holen E, Aksnes A, Ronnestad I, Zerrahn JE, Espe M (2014) Adult Atlantic salmon (Salmo salar L.) adapts to long-term surplus dietary arginine supplementation. Aquac Nutr (in press)

  • Berge GE, Lied E, Sveier H (1997) Nutrition of Atlantic salmon (Salmo salar): the requirement and metabolism of arginine. Comp Biochem Physiol A Physiol 117(4):501–509

    Article  Google Scholar 

  • Berge GE, Sveier H, Lied E (2002) Effects of feeding Atlantic salmon (Salmo salar L.) imbalanced levels of lysine and arginine. Aquac Nutr 8(4):239–248

    Article  CAS  Google Scholar 

  • Cheng ZY, Gatlin DM, Buentello A (2012) Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops × Morone saxatilis). Aquaculture 362:39–43

    Article  CAS  Google Scholar 

  • Clemmensen C, Madsen AN, Smajilovic S, Holst B, Brauner-Osborne H (2012) l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids 43(3):1265–1275

    Google Scholar 

  • Dowlatabadi R, Weljie AM, Thorpe TA, Yeung EC, Vogel HJ (2009) Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol Biochem 47(5):343–350

    Article  PubMed  CAS  Google Scholar 

  • Espe M, Holen E (2013) Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar). Br J Nutr 110(1):20–28

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Koshio S, Ishikawa M, Yokoyama S (2013) Interactive effects of dietary arginine and histidine on the performances of Japanese flounder Paralichthys olivaceus juveniles. Aquaculture 414:173–182

    Article  CAS  Google Scholar 

  • He QH, Kong XF, Wu GY, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan B, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37(1):199–208

    Article  PubMed  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl A (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8(3):175–194

    Article  CAS  Google Scholar 

  • Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, Patel MS, Porter CW (2007) Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem 282(11):8404–8413

    Article  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu GY (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17(9):571–588

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009a) High fat feeding and dietary l-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37(1):187–198

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G (2009b) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139(2):230–237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koponen T, Cerrada-Gimenez M, Pirinen E, Hohtola E, Paananen J, Vuohelainen S, Tusa M, Pirnes-Karhu S, Heikkinen S, Virkamaki A, Uimari A, Alhonen L, Laakso M (2012) The activation of hepatic and muscle polyamine catabolism improves glucose homeostasis. Amino Acids 42(2–3):427–440

    Article  PubMed  CAS  Google Scholar 

  • Krovel AV, Softeland L, Torstensen B, Olsvik PA (2008) Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L. Comp Biochem Physiol C Toxicol Pharmacol 148(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39(2):349–357

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Wu CC, Shin S, Fung HL (2012) Continuous exposure to l-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. Amino Acids 43(3):1179–1188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mommsen TP, Moon TW, Plisetskaya EM (2001) Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool 74(5):668–678

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2011) Nutrient requirements of fish and shrimp, Committee on the Nutrient Requirement of Fish and Shrimp. The National Academies Press, Washington, DC

  • Odenlund M, Holmqvist B, Baldetorp B, Hellstrand P, Nilsson BO (2009) Polyamine synthesis inhibition induces S phase cell cycle arrest in vascular smooth muscle cells. Amino Acids 36(2):273–282

    Article  PubMed  CAS  Google Scholar 

  • Oredsson SM, Alm K, Dahlberg E, Holst CM, Johansson VM, Myhre L, Soderstjerna E (2007) Inhibition of cell proliferation and induction of apoptosis by N-1, N-11-diethylnorspermine-induced polyamine pool reduction. Biochem Soc T 35:405–409

    Article  CAS  Google Scholar 

  • Pegg AE (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294(6):E995–E1010

    Article  PubMed  CAS  Google Scholar 

  • Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61(9):880–894

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pirinen E, Kuulasmaa T, Pietila M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamaki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Yla-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Janne J, Laakso M (2007) Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 27(13):4953–4967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Plisetskaya EM, Buchellinarvaez LI, Hardy RW, Dickhoff WW (1991) Effects of injected and dietary arginine on plasma-insulin levels and growth of Pacific salmon and rainbow-trout. Comp Biochem Physiol A Physiol 98(1):165–170

    Article  Google Scholar 

  • Pohlenz C, Buentello A, Miller T, Small BC, MacKenzie DS, Gatlin DM 3rd (2013) Effects of dietary arginine on endocrine growth factors of channel catfish, Ictalurus punctatus. Comp Biochem Physiol A Mol Integr Physiol 166(2):215–221

    Article  PubMed  CAS  Google Scholar 

  • Polakof S, Skiba-Cassy S, Choubert G, Panserat S (2010) Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 213(Pt 9):1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182(8):1015–1045

    Article  PubMed  CAS  Google Scholar 

  • Soderstjerna E, Holst CM, Alm K, Oredsson SM (2010) Apoptosis induced by the potential chemotherapeutic drug N-1, N-11-diethylnorspermine in a neuroblastoma cell line. Anti Cancer Drug 21(10):917–926

    Article  CAS  Google Scholar 

  • Stanic I, Facchini A, Borzi RM, Stefanelli C, Flamigni F (2009) The polyamine analogue N1, N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines. J Cell Physiol 219(1):109–116

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37(1):169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Li X, Yao K, Gu W, Smith SB, Wu G (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22(5):441–445

    Article  PubMed  CAS  Google Scholar 

  • Tan B, Li X, Yin Y, Wu Z, Liu C, Tekwe CD, Wu G (2012) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci 17:2237–2246

    Article  CAS  Google Scholar 

  • Torstensen BE, Espe M, Stubhaug I, Lie O (2011) Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br J Nutr 106(5):633–647

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Keinanen TA, Karppinen A, Woster P, Uimari P, Janne J, Alhonen L (2009) Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts. Biochem J 422:101–109

    Article  PubMed  CAS  Google Scholar 

  • Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP (2007) l-Arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation 116(2):188–195

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Shao QJ, Xiao JX, Peng X, Ngandzali BO, Sun Z, Ng WK (2011) Effects of dietary arginine and lysine levels on growth performance, nutrient utilization and tissue biochemical profile of black sea bream, Acanthopagrus schlegelii, fingerlings. Aquaculture 319(1–2):72–80

    Article  CAS  Google Scholar 

  • Zulak KG, Weljie AM, Vogel HJ, Facchini PJ (2008) Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biol 8:5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through the project “Integrated amino acid requirement” financed by the Research Council of Norway (Project No. 208352/E-40) and EWOS Innovation AS.

Conflict of interest

The authors declare no interest of conflict and all authors have approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Synne Marte Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, S.M., Taylor, R., Holen, E. et al. Arginine supplementation and exposure time affects polyamine and glucose metabolism in primary liver cells isolated from Atlantic salmon. Amino Acids 46, 1225–1233 (2014). https://doi.org/10.1007/s00726-014-1684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1684-4

Keywords

Navigation