Skip to main content
Log in

The control of hyperhomocysteinemia through thiol exchange mechanisms by mesna

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In hyperhomocysteinemic patients, after reaction with homocysteine-albumin mixed disulfides (HSS-ALB), mesna (MSH) forms the mixed disulfide with Hcy (HSSM) which can be removed by renal clearance, thus reducing the plasma concentration of total homocysteine (tHcy). In order to assess the HSS-ALB dethiolation via thiol exchange reactions, the distribution of redox species of cysteine, cysteinylglycine, homocysteine and glutathione was investigated in the plasma of healthy subjects: (i) in vitro, after addition of 35 μM reduced homocysteine (HSH) to plasma for 72 h, followed by MSH addition (at the concentration range 10–600 μM) for 25 min; (ii) in vivo, after oral treatment with methionine (methionine, 200 mg/kg body weight, observation time 2–6 h). In both experiments the distribution of redox species, but not the total amount of each thiol, was modified by thiol exchange reactions of albumin and cystine, with changes thermodynamically related to the pKa values of thiols in the corresponding mixed disulfides. MSH provoked a dose–response reversal of the redox state of aged plasma, and the thiol action was confirmed by in vivo experiments. Since it was observed that the dimesna production could be detrimental for the in vivo optimization of HSSM formation, we assume that the best plasma tHcy lowering can be obtained at MSH doses producing the minimum dimesna concentration in each individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cys:

Cysteine

CysGly:

Cysteinylglycine

CSH:

Reduced Cys

CSSC:

Cystine

CSS-ALB:

Cysteine-albumin mixed disulfide

CGSH:

Reduced CysGly

CGSS:

CysGly disulfide

CGSS-ALB:

Cysteinylglycine-albumin mixed disulfide

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

CSSH:

Cysteine-homocysteine mixed disulfide

Hcy:

Homocysteine

HSH:

Reduced Hcy

HSSH:

Homocystine

HSS-ALB:

Homocysteine-albumin mixed disulfide

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide

GSS-ALB:

Glutathione-albumin mixed disulfide

MLT:

Methionine loading test

MSH:

Mesna

MSSM:

Dimesna

MSS-ALB:

Mesna-albumin mixed disulfide

NEM:

N-ethylmaleimide

PSH:

Protein SH groups

TSH:

Total plasma thiols, sum of PSH and XSH

XSS-ALB:

Thiol-albumin mixed disulfides

tCSH, tGGSH, tHSH, tGSH:

Sum of concentrations of redox species expressed as reduced equivalents of XSH, namely XSSX = 2XSH

XSH and XSSX:

Thiols and disulfides of low molecular weight

References

  • Andersson A, Hultberg B, Lindgren A (2000) Redox status of plasma homocysteine and other plasma thiols in stroke patients. Atherosclerosis 151:535–539

    Article  CAS  PubMed  Google Scholar 

  • Burkert H (1983) Clinical overview of mesna. Cancer Treat Rev 10(Suppl A):175–181

    Article  PubMed  Google Scholar 

  • Carballal S, Radi R, Kirk MC, Barnes S, Freeman BA, Alvarez B (2003) Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry 42:9906–9914

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou J, Sadler PJ, Tucker A (1994) A new structural transition of serum albumin dependent on the state of Cys34. Detection by 1H-NMR spectroscopy. Eur J Biochem 225:363–368

    Article  CAS  PubMed  Google Scholar 

  • Cutler MJ, Urquhart BL, Freeman DJ, Spence JD, House AA (2009) Mesna for the treatment of hyperhomocysteinemia in hemodialysis patients. Blood Purif 27:306–310

    Article  PubMed  Google Scholar 

  • Di Giuseppe D, Di Simplicio P, Capecchi PL, Lazzerini PE, Pasini FL (2003) Alteration in the redox state of plasma of heart-transplant patients with moderate hyperhomocysteinemia. J Lab Clin Med 142:21–28

    Article  PubMed  Google Scholar 

  • Di Giuseppe D, Frosali S, Priora R, Di Simplicio FC, Buonocore G, Cellesi C, Capecchi PL, Pasini FL, Lazzerini PE, Jakubowski H, Di Simplicio P (2004) The effects of age and hyperhomocysteinemia on the redox forms of plasma thiols. J Lab Clin Med 144:235–245

    Article  PubMed  Google Scholar 

  • Di Giuseppe D, Ulivelli M, Bartalini S, Battistini S, Cerase A, Passero S, Summa D, Frosali S, Priora R, Margaritis A, Di Simplicio P (2010) Regulation of redox forms of plasma thiols by albumin in multiple sclerosis after fasting and methionine loading test. Amino Acids 38:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Eikelboom JW, Lonn E, Genst JJ, Hankey G, Hysuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiological evidence. Ann Intern Med 131:363–375

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Galimberti G, Conti E, Zini M, Piazza F, Fenaroli F, Isella V, Facheris M, Perlangeli V, Antolini L, De Filippi F, Ferrarese C (2008) Post-methionine load test: a more sensitive tool to reveal hyperhomocysteinemia in Alzheimer patients? Clin Biochem 41:914–916

    Article  CAS  PubMed  Google Scholar 

  • Gryzunov YA, Arroyo A, Vigne JL, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–66

    Article  CAS  PubMed  Google Scholar 

  • Hausheer FH, Shanmugarajah D, Leverett BD, Chen X, Huang Q, Kochat H, Petluru PN, Parker AR (2010) Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase. Cancer Chemother Pharmacol 65:941–951

    Article  CAS  PubMed  Google Scholar 

  • Hortin GL, Seam N, Hoehn GT (2006) Bound homocysteine, cysteine, and cysteinylglycine distribution between albumin and globulins. Clin Chem 52:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  CAS  PubMed  Google Scholar 

  • Jakupec MA, Galanski M, Keppler BK (2004) The effect of cytoprotective agents in platinum anticancer therapy. Met Ions Biol Syst 42:179–208

    CAS  PubMed  Google Scholar 

  • Klastersky J (2003) Side effects of ifosfamide. Oncology 65(Suppl 2):7–10

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg BH, Nguyen T, Hartmann B, Junker E, Kupfer A, Cerny T (1994) Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemother Pharmacol 35:132–136

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J (2006) Homocysteine trials—clear outcomes for complex reasons. N Engl J Med 354:1629–1632

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine and glutathione in human plasma. Anal Biochem 200:218–229

    Article  CAS  PubMed  Google Scholar 

  • Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM (1995) Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Homocysteine and peripheral vascular disease. Arterioscler Thromb Vasc Biol 5:232–240

    Article  Google Scholar 

  • Manz I, Dietrich I, Przybylski M, Niemeyer U, Pohl J, Hilgard P, Brock N (1985) Identification and quantification of metabolite conjugates of activated cyclophosphamide and ifosfamide with mesna in urine by ion-pair extraction and fast atom bombardment mass spectrometry. Biomed Mass Spectrom 12:545–553

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurovegetative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  • Ormstad K, Ohno Y (1984) N-acetylcysteine and sodium 2-mercaptoethane sulfonate as sources of urinary thiol groups in the rat. Cancer Res 44:379–800

    Google Scholar 

  • Ormstad K, Uehara N (1982) Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett 150:354–358

    Article  CAS  PubMed  Google Scholar 

  • Ormstad K, Orrenius S, Lastbom T, Uehara N, Pohl J, Stekar J, Brock N (1983) Pharmacokinetics and metabolism of sodium 2-mercaptoethanesulfonate in the rat. Cancer Res 43:333–338

    CAS  PubMed  Google Scholar 

  • Pendyala L, Creaven PJ, Schwartz G, Meropol NJ, Bolanowska-Higdon W, Zdanowicz J, Murphy M, Perez R (2000) Intravenous ifosfamide/mesna is associated with depletion of plasma thiols without depletion of leukocyte glutathione. Clin Cancer Res 6:1314–1321

    CAS  PubMed  Google Scholar 

  • Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  CAS  PubMed  Google Scholar 

  • Priora R, Coppo L, Margaritis A, Di Giuseppe D, Frosali S, Summa D, Heo J, Di Simplicio P (2010) The control of S-thiolation by cysteine via gamma-glutamyltranspeptidase and thiol exchanges in erythrocytes and plasma of diamide-treated rats. Toxicol Appl Pharmacol 242:333–343

    Article  CAS  PubMed  Google Scholar 

  • Quéré I, Gris JC, Dauzat M (2005) Homocysteine and venous thrombosis. Semin Vasc Med 5(2):183–189

    Article  PubMed  Google Scholar 

  • Smith PF, Booker BM, Creaven P, Perez R, Pendyala L (2003) Pharmacokinetics and pharmacodynamics of mesna-mediated plasma cysteine depletion. J Clin Pharmacol 43:1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Spiga O, Summa D, Cirri S, Bernini A, Venditti V, De Chiara M, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Di Simplicio P, Niccolai N (2011) A structurally driven analysis of thiol reactivity in mammalian albumins. Biopolymers 95:278–285

    Article  CAS  PubMed  Google Scholar 

  • Stofer-Vogel B, Cerny T, Kupfer A, Junker E, Lauterburg BH (2003) Depletion of circulating cyst(e)ine by oral and intravenous mesna. Br J Cancer 68:590–593

    Article  Google Scholar 

  • Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P (2007) Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Proteins 69:369–378

    Article  CAS  PubMed  Google Scholar 

  • Turell L, Botti H, Carballal S, Ferrer-Sueta G, Souza JM, Durán R, Freeman BA, Radi R, Alvarez B (2008) Reactivity of sulfenic acid in human serum albumin. Biochemistry 47:358–367

    Article  CAS  PubMed  Google Scholar 

  • Urquhart BL, House AA, Cutler MJ, Spence JD, Freeman DJ (2006) Thiol exchange: an in vivo assay that predicts the efficacy of novel homocysteinemia lowering therapies. J Pharmacol Sci 95:1742–1750

    Article  CAS  Google Scholar 

  • Urquhart BL, Freeman DJ, Spence JD, House AA (2007) Mesna as a nonvitamin intervention to lower plasma total homocysteine concentration: implications for assessment of the homocysteine theory of atherosclerosis. J Clin Pharmacol 47:991–997

    Article  CAS  PubMed  Google Scholar 

  • Vrethem M, Mattsson E, Hebelka H, Leerbeck K, Osterberg A, Landtblom AM, Balla B, Nilsson H, Hultgren M, Brattstrom L, Kagedal B (2003) Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid. Mult Scleros 9:239–245

    Article  CAS  Google Scholar 

Download references

Informed consent

The authors have given their consent to be included in the present study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Simplicio.

Additional information

D. Di Giuseppe and R. Priora equal experimental contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giuseppe, D., Priora, R., Coppo, L. et al. The control of hyperhomocysteinemia through thiol exchange mechanisms by mesna. Amino Acids 46, 429–439 (2014). https://doi.org/10.1007/s00726-013-1636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1636-4

Keywords

Navigation