Skip to main content
Log in

Bacterial killing mechanism of sheep myeloid antimicrobial peptide-18 (SMAP-18) and its Trp-substituted analog with improved cell selectivity and reduced mammalian cell toxicity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

To develop short antimicrobial peptide with improved cell selectivity and reduced mammalian cell toxicity compared to sheep myeloid antimicrobial peptide-29 (SMAP-29) and elucidate the possible mechanisms responsible for their antimicrobial action, we synthesized a N-terminal 18-residue peptide amide (SMAP-18) from SMAP-29 and its Trp-substituted analog (SMAP-18-W). Due to their reduced hemolytic activity and retained antimicrobial activity, SMAP-18 and SMAP-18-W showed higher cell selectivity than SMAP-29. In addition, SMAP-18 and SMAP-18-W had no cytotoxicity against three different mammalian cells such as RAW 264.7, NIH-3T3 and HeLa cells even at 100 μM. These results suggest that SMAP-18 and SMAP-18-W have potential for future development as novel therapeutic antimicrobial agent. Unlike SMAP-29, SMAP-18 and SMAP-18-W showed relatively weak ability to induce dye leakage from bacterial membrane-mimicking liposomes, N-phenyl-1-napthylamine (NPN) uptake and o-nitrophenyl-β-galactoside (ONPG) hydrolysis. Similar to SMAP-29, SMAP-18-W led to a significant membrane depolarization (>80 %) against Staphylococcus aureus at 2 × MIC. In contrast, SMAP-18 did not cause any membrane depolarization even at 4 × MIC. In confocal laser scanning microscopy, we observed translocation of SMAP-18 across the membrane in a non-membrane disruptive manner. SMAP-29 and SMAP-18-W were unable to translocate the bacterial membrane. Collectively, we propose here that SMAP-29 and SMAP-18-W kill microorganisms by disrupting/perturbing the lipid bilayer and forming pore/ion channels on bacterial cell membranes, respectively. In contrast, SMAP-18 may kill bacteria via intracellular-targeting mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

Fmoc:

9-Fluorenylmethoxycarbonyl

TFA:

Tifluoroacetic acid

DCC:

Dicyclohexylcarbodiimide

HOBt:

1-Hydroxy-benzotriazole

DiSC3-5:

3,3′-Dipropylthiadicarbocyanine iodide

EYPE:

Egg yolk l-α-phosphatidylethanolamine

EYPG:

Egg yolk l-α-phosphatidylglycerol

EYPC:

Egg yolk l-α-phosphatidylcholine

NPN:

N-phenyl-1-napthylamine

ONPG:

o-Nitrophenyl-β-galactoside

FBS:

Fetal bovine serum

MALDI-TOF MS:

Matrix-assisted laser desorption ionization–time-of-flight mass spectrometry

RP-HPLC:

Reverse-phase high-performance liquid chromatography

CFU:

Colony forming unit

MIC:

Minimal inhibitory concentration

PBS:

Phosphate-buffered saline

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

LUVs:

Large unilamellar vesicles

References

  • Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bagella L, Scocchi M, Zanetti M (1995) cDNA sequences of the three sheep myeloid cathelicidins. FEBS Lett 376:225–228

    Article  CAS  PubMed  Google Scholar 

  • Barlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK (2009) Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 96:552–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson RM, Liu CQ (2009) Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Dev Res 70:481–498

    Article  CAS  Google Scholar 

  • Dawson RM, Liu CQ (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. Int J Antimicrob Agents 37:432–437

    Article  CAS  PubMed  Google Scholar 

  • Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8:84–87

    CAS  PubMed  Google Scholar 

  • Fázio MA, Jouvensal L, Vovelle F, Bulet P, Miranda MT, Daffre S, Miranda A (2007) Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers 88:386–400

    Article  PubMed  Google Scholar 

  • Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55:31–49

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Pirri G, Bozzi A, Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Farmer SW (1993) Mechanism of uptake of deglucoteicoplanin amide derivatives across outer membranes of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 37:453–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the β-sheet antimicrobial protegrin. Biochemistry 39:139–145

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Lee KC, Cross TA (1993) Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry 32:7035–7047

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Chikushi A, Tougu S, Imura Y, Nishida M, Yano Y, Matsuzaki K (2004) Membrane translocation mechanism of the antimicrobial peptide buforin 2. Biochemistry 43:15610–15616

    Article  CAS  PubMed  Google Scholar 

  • Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Saraswathi P, Verma C, Tan DT, Tan AL, Liu S, Beuerman RW (2013) Rapid bactericidal action of α-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta 1828:834–844

    Article  CAS  PubMed  Google Scholar 

  • Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hahm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J 275:3911–3920

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84:553–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loh B, Grant C, Hancock REW (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:546–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    Article  CAS  PubMed  Google Scholar 

  • Nan YH, Bang JK, Jacob B, Park IS, Shin SY (2012) Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides 35:239–247

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm KS, Kim Y (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1–8)-magainin 2(1–12) and its analogues, on their antibiotic activities and structures. Biochemistry 39:11855–11964

    Article  CAS  PubMed  Google Scholar 

  • Ono S, Lee S, Kodera Y, Aoyagi H, Waki M, Kato T, Izumiya N (1987) Environment-dependent conformation and antimicrobial activity of a gramicidin S analog containing leucine and lysine residues. FEBS Lett 220:332–336

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    Article  CAS  PubMed  Google Scholar 

  • Park K, Oh D, Shin SY, Hahm KS, Kim Y (2002) Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 290:204–212

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Park Y, Park IS, Hahm KS, Shin SY (2008) Bacterial selectivity and plausible mode of antibacterial action of designed Pro-rich short model antimicrobial peptides. J Pept Sci 14:876–882

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Nan YH, Park Y, Kim JI, Park IS, Hahm KS, Shin SY (2009) Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Biochim Biophys Acta 1788:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Feix JB (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophy Acta 1758:1245–1256

    Article  CAS  Google Scholar 

  • Sawai MV, Waring AJ, Kearney WR, McCray PB Jr, Forsyth WR, Lehrer RI, Tack BF (2002) Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng 15:225–232

    Article  CAS  PubMed  Google Scholar 

  • Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1998) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    Google Scholar 

  • Shin SY, Park EJ, Yang ST, Jung HJ, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Structure–activity analysis of SMAP-29, a sheep leukocytes-derived antimicrobial peptide. Biochem Biophys Res Commun 285:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Skerlavaj B, Romeo D, Gennaro R (1990) Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58:3724–3730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R (1999) SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463:58–62

    Article  CAS  PubMed  Google Scholar 

  • Solanas C, de la Torre BG, Fernández-Reyes M, Santiveri CM, Jiménez MA, Rivas L, Jiménez AI, Andreu D, Cativiela C (2009) Therapeutic index of gramicidin S is strongly modulated by d-phenylalanine analogues at the β-turn. J Med Chem 52:664–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44:12094–12106

    Article  CAS  PubMed  Google Scholar 

  • Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46:3585–3590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu H, Waring AJ, Lehrer RI (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem 269:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Travis SM, Anderson NN, Forsyth WB, Espiritu C, Conway BD, Greenberg EB, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner J, Cho Y, Dinh N, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrobial Agents Chemother 42:2206–2214

    CAS  Google Scholar 

  • Walrant A, Vogel A, Correia I, Lequin O, Olausson BE, Desbat B, Sagan S, Alves ID (2012) Membrane interactions of two arginine-rich peptides with different cell internalization capacities. Biochim Biophys Acta 1818:1755–1763

    Article  CAS  PubMed  Google Scholar 

  • Wiedman G, Herman K, Searson P, Wimley WC, Hristova K (2013) The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization. Biochim Biophys Acta 1828:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276:35714–35722

    Article  CAS  PubMed  Google Scholar 

  • Zhu WL, Hahm KS, Shin SY (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J Pept Sci 15:569–575

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong-Kyu Bang or Song Yub Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, B., Kim, Y., Hyun, JK. et al. Bacterial killing mechanism of sheep myeloid antimicrobial peptide-18 (SMAP-18) and its Trp-substituted analog with improved cell selectivity and reduced mammalian cell toxicity. Amino Acids 46, 187–198 (2014). https://doi.org/10.1007/s00726-013-1616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1616-8

Keywords

Navigation