Skip to main content

Advertisement

Log in

Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Ornithine aminotransferase (l-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34 % in males and 27 % in females) was the greatest (50 %) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso E, Rubio V (1989) Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation. Biochem J 259:131–138

    CAS  PubMed  Google Scholar 

  • Boernke WE, Stevens FJ, Peraino C (1981) Effects of self-association of ornithine aminotransferase on its physicochemical characteristics. Biochemistry 20:115–121

    Article  CAS  PubMed  Google Scholar 

  • Boon L, Geerts WJ, Jonker A et al (1999) High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules. Histochem Cell Biol 111:445–452

    Article  CAS  PubMed  Google Scholar 

  • Boutry C, Matsumoto H, Bos C et al (2012) Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids 43:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Brennan PC, Peraino C, Fry RJM, Swick RW (1970) Immunofluorescent localization of ornithine aminotransferase in rat liver. J Histochem Cytochem 18:264–267

    Article  CAS  PubMed  Google Scholar 

  • Bulfield G, Hall JM (1981) Ornithine aminotransferase levels in rats and mice differ in their response to oestrogen and testosterone. Comp Biochem Physiol Part B Comp Biochem 69:295–297

    Article  Google Scholar 

  • Cynober L, Coudray-Lucas C (1995) Urinary urea nitrogen prediction of total urinary nitrogen. J Parenter Enteral Nutr 19(2):174

    Article  CAS  Google Scholar 

  • Davis TA, Fiorotto ML, Reeds PJ (1993) Amino acid compositions of body and milk protein change during the suckling period in rats. J Nutr 123:947–956

    CAS  PubMed  Google Scholar 

  • Déchaud H, Lejeune H, Garoscio-Cholet M et al (1989) Radioimmunoassay of testosterone not bound to sex-steroid-binding protein in plasma. Clin Chem 35:1609–1614

    PubMed  Google Scholar 

  • Durán RV, Oppliger W, Robitaille AM et al (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    Article  PubMed  Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    CAS  PubMed  Google Scholar 

  • Filipski E, King VM, Li XM et al (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697

    Article  PubMed  Google Scholar 

  • Hadj-Sahraoui N, Seugnet I, Ghorbel MT, Demeneix B (2000) Hypothyroidism prolongs mitotic activity in the post-natal mouse brain. Neurosci Lett 280:79–82

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in non-genomic androgen actions. Mol Endocrinol 16:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Herzfeld A, Greengard O (1969) Endocrine modification of the developmental formation of ornithine aminotransferase in rat tissues. J Biol Chem 244:4894–4898

    CAS  PubMed  Google Scholar 

  • Herzfeld A, Knox WE (1968) The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissues. J Biol Chem 243:3327–3332

    CAS  PubMed  Google Scholar 

  • Herzfeld A, Raper SM (1976) Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta 428:600–610

    Article  CAS  PubMed  Google Scholar 

  • Jung MJ, Seiler N (1978) Enzyme-activated irreversible inhibitors of l-ornithine: 2-oxoacid aminotransferase. Demonstration of mechanistic features of the inhibition of ornithine aminotransferase by 4-aminohex-5-ynoic acid and gabaculine and correlation with in vivo activity. J Biol Chem 253:7431–7439

    CAS  PubMed  Google Scholar 

  • Kerwin JF Jr, Heller M (1994) The arginine-nitric oxide pathway: a target for new drugs. Med Res Rev 14:23–74

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Mateo RD, Yin YL, Wu GY (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian Aust J Anim Sci 20:295–306

    CAS  Google Scholar 

  • Kobayashi T, Nishii M, Takagi Y et al (1989) Molecular cloning and nucleotide sequence analysis of mRNA for human kidney ornithine aminotransferase. An examination of ornithine aminotransferase isozymes between liver and kidney. FEBS Lett 255:300–304

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Ananda S, Devaraju KS et al (2009) A sensitive assay for ornithine amino transferase in rat brain mitochondria by ninhydrin method. Indian J Clin Biochem 24:275–279

    Article  Google Scholar 

  • Lee NK, MacLean HE (2011) Polyamines, androgens, and skeletal muscle hypertrophy. J Cell Physiol 226:1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Skinner JP, Zajac JD, Maclean HE (2011) Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am J Physiol Endocrinol Metab 301:E172–E179

    Article  CAS  PubMed  Google Scholar 

  • Levillain O, Hus-Citharel A, Garvi S et al (2004) Ornithine Metabolism in Male and Female Rat Kidney: mitochondrial expression of ornithine aminotransferase and arginase II. Am J Physiol Renal physiol 286:F727–F738

    Article  CAS  PubMed  Google Scholar 

  • Levillain O, Diaz JJ, Blanchard O, Déchaud H (2005) Testosterone down-regulates ornithine aminotransferase gene and up-regulates arginase II and ornithine decarboxylase genes for polyamines synthesis in the murine kidney. Endocrinology 146:950–959

    Article  CAS  PubMed  Google Scholar 

  • Levillain O, Ventura G, Déchaud H et al (2007) Sex-differential expression of ornithine aminotransferase in the mouse kidney. Am J Physiol Renal physiol 292:F1016–F1027

    Article  CAS  PubMed  Google Scholar 

  • Levillain O, Dégletagne C, Letexier D, Déchaud H (2011) Orchidectomy Upregulates while testosterone treatment downregulates the expression of ornithine aminotransferase gene in the mouse kidney. In: Akin F (ed) Basic and Clinical Endocrinology Up-to-Date, Book 3, pp 115–132

  • Lim SN, Rho HW, Park JW et al (1998) A variant of ornithine aminotransferase from mouse small intestine. Exp Mol Med 30:131–135

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Lin MT, Cheng RT, Chen SH (2010) testosterone depletion by castration may protect mice from heat-induced multiple organ damage and lethality. J Biomed Biotechnol. doi:10.1155/2010/485306

  • Lu TS, Mazelis M (1975) l-ornithine: 2-oxoacid aminotransferase from squash (Cucurbita pepo, L.) Cotyledons. Plant Physiol 55:502–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons RT, Pitot HC (1977) Hormonal regulation of ornithine aminotransferase biosynthesis in rat liver and kidney. Arch Biochem Biophys 180:472–479

    Article  CAS  PubMed  Google Scholar 

  • Mallette LE, Exton JH, Park CR (1969) Control of gluconeogenesis from amino acids in the perfused rat liver. J Biol Chem 244:5713–5723

    CAS  Google Scholar 

  • Manteuffel-Cymborowska M, Chmurzyńska W, Peska M, Grzelakowska-Sztabert B (1995) Arginine and ornithine metabolizing enzymes in testosterone-induced hypertrophic mouse kidney. Int J Biochem Cell Biol 27:287–295

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Kobayashi T, Tashiro K, Kasahara M (1994) Changes in ornithine metabolic enzymes induced by dietary protein in small intestine and liver: intestine-liver relationship in ornithine supply to liver. J Biochem 116:721–727

    CAS  PubMed  Google Scholar 

  • Meier H, Hoag WG, McBurney JJ (1965) Chemical characterization of inbred-strain mouse milk. I. Gross composition and amino acid analysis. J Nutr 85:305–308

    CAS  PubMed  Google Scholar 

  • Millican PE, Vernon RG, Pain VM (1987) Protein metabolism in the mouse during pregnancy and lactation. Biochem J 248:251–257

    CAS  PubMed  Google Scholar 

  • Mueckler MM, Pitot HC (1983) Regulation of ornithine aminotransferase mRNA levels in rat kidney by estrogen and thyroid hormone. J Biol Chem 258:1781–1784

    CAS  PubMed  Google Scholar 

  • Mueckler MM, Merrill MJ, Pitot HC (1983) Translational and pre-translational control of ornithine aminotransferase synthesis in rat liver. J Biol Chem 258:6109–6114

    CAS  PubMed  Google Scholar 

  • Mueckler MM, Moran S, Pitot HC (1984) Transcriptional control of ornithine aminotransferase synthesis in rat kidney by estrogen and thyroid hormone. J Biol Chem 259:2302–2305

    CAS  PubMed  Google Scholar 

  • Nada AMK, Abd-Elhalim HM, El-Domyati FM et al (2010) Expression, detection of candidate function and homology modeling for Vicia villosa ornithine δ-aminotransferase. GM Crops 1:250–256

    Article  PubMed  Google Scholar 

  • Peraino C, Pitot HC (1963) Ornithine-δ-transaminase in the rat I. Assay and some general properties. Biochim Biophys Acta 73:222–231

    Article  CAS  Google Scholar 

  • Reyes AA, Karl IE, Klahr S (1994) Role of arginine in health and in renal disease. Am J Physiol 267:F331–F346

    CAS  PubMed  Google Scholar 

  • Sanada Y, Suemori I, Katunuma N (1970) Properties of ornithine aminotransferase from rat liver, kidney and small intestine. Biochim Biophys Acta 220:42–50

    Article  CAS  PubMed  Google Scholar 

  • Scher WI, Vogel HJ (1957) Occurrence of ornithine δ-transaminase: a dichotomy. Proc Natl Acad Sci 43:796–803

    Article  CAS  PubMed  Google Scholar 

  • Shull JD, Pennington KL, Gurr JA, Ross AC (1995) Cell-type specific interactions between retinoic acid and thyroid hormone in the regulation of expression of the gene encoding ornithine aminotransferase. Endocrinology 136:2120–2126

    CAS  PubMed  Google Scholar 

  • Vandewater LJ, Henning SJ (1985) Role of thyroxine in the postnatal development of rat hepatic tryptophan oxygenase and ornithine aminotransferase. Proc Soc Exp Biol Med 179:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ventura G, De Bandt JP, Segaud F et al (2009) Overexpression of ornithine aminotransferase: consequences on amino acid homeostasis. Br J Nutr 101:843–851

    Article  CAS  PubMed  Google Scholar 

  • Visek WJ (1986) Arginine needs, physiological state and usual diets. A re-evaluation. J Nutr 116(1):36–46

    CAS  PubMed  Google Scholar 

  • Volpe P, Sawamura R, Strecker HJ (1969) Control of ornithine δ-transaminase in rat liver and kidney. J Biol Chem 244:719–726

    CAS  PubMed  Google Scholar 

  • Volpe P, Menna T, Pagano G (1974) Ornithine-δ-transaminase heterogeneity and regulation. Eur J Biochem 44:455–458

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lawler AM, Steel G et al (1995) Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet 11:185–190

    Article  PubMed  Google Scholar 

  • Wu C (1979) Estrogen receptor translocation and ornithine aminotransferase induction by estradiol in rat kidney. Biochem Biophys Res Commun 89:769–776

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Arumugam R, Zhang N, Lee MM (2010) Androgen profiles during pubertal Leydig cell development in mice. Reproduction 140:113–121

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu Z, Dai Z et al (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Kanno T, Yajima T (2006) A chemically derived milk substitute that is compatible with mouse milk for artificial rearing of mouse pups. Exp Anim 55:391–397

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin Y, Li X et al (2012) Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids 42:2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Yoo PK, Aguirre CC et al (2003) Widespread expression of arginase I in mouse tissues: biochemical and physiological implications. J Histochem Cytochem 51:1151–1160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the CNRS and the University of Lyon. BL was in receipt of a fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Duchamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladeuix, B., Duchamp, C. & Levillain, O. Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development. Amino Acids 46, 167–176 (2014). https://doi.org/10.1007/s00726-013-1608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1608-8

Keywords

Navigation