Skip to main content
Log in

Bidirectional fluxes of spermine across the mitochondrial membrane

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers. Although spermine transport is electrophoretic in origin, its accumulation does not follow the Nernst equation for the presence of an efflux pathway. Spermine efflux may be induced by different agents, such as FCCP, antimycin A and mersalyl, able to completely or partially reduce the ΔΨ value and, consequently, suppress or weaken the force necessary to maintain spermine in the matrix. However this efflux may also take place in normal conditions when the electrophoretic accumulation of the polycationic polyamine induces a sufficient drop in ΔΨ able to trigger the efflux pathway. The release of the polyamine is most probably electroneutral in origin and can take place in exchange with protons or in symport with phosphate anion. The activity of both the uptake and efflux pathways induces a continuous cycling of spermine across the mitochondrial membrane, the rate of which may be prominent in imposing the concentrations of spermine in the inner and outer compartment. Thus, this event has a significant role on mitochondrial permeability transition modulation and consequently on the triggering of intrinsic apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ΔΨ:

Electrical transmembrane potential

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone

MPT:

Mitochondrial permeability transition

PAO:

Polyamine oxidase

Pi:

Phosphate

RLM:

Rat liver mitochondria

ROS:

Reactive oxygen species

SMO:

Spermine oxidase

SPM:

Spermine

References

  • Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010a) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010b) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368

    Article  CAS  PubMed  Google Scholar 

  • Alhonen-Hongisto L, Seppänen P, Jänne J (1980) Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone). Biochem J 192:941–945

    CAS  PubMed  Google Scholar 

  • Anderson OS (1989) Kinetics of ion movement mediated by carriers and channels. Methods Enzymol 171:62–112

    Article  Google Scholar 

  • Arndt MA, Battaglia V, Parisi E, Lortie MJ, Isome M, Baskerville C, Pizzo DP, Ientile R, Colombatto S, Toninello A, Satriano J (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 296:C1411–C1419

    Article  CAS  PubMed  Google Scholar 

  • Battaglia V, Grancara S, Mancon M, Cravanzola C, Colombatto S, Grillo MA, Tempera G, Agostinelli E, Toninello A (2010) Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria. Amino Acids 38:423–430

    Article  CAS  PubMed  Google Scholar 

  • Battaglia V, Tibaldi E, Grancara S, Zonta F, Brunati AM, Martinis P, Bragadin M, Grillo MA, Tempera G, Agostinelli E, Toninello A (2012) Effect of peroxides on spermine transport in rat brain and liver mitochondria. Amino Acids 42:741–749

    Article  CAS  PubMed  Google Scholar 

  • Bordin L, Cattapan F, Clari G, Toninello A, Siliprandi N, Moret V (1994) Spermine-mediated casein kinase II-uptake by rat liver mitochondria. Biochim Biophys Acta 1199:266–2670

    Article  CAS  PubMed  Google Scholar 

  • Byczkowski JZ, Zychlinski L, Porter CW (1982) Inhibition of the bioenergetic functions of isolated rat liver mitochondria by polyamines. Biochem Pharmacol 31:4045–4053

    Article  CAS  PubMed  Google Scholar 

  • Chaffee RR, Salganicoff L, Arine RM, Rochelle RH, Schultz EL (1977) Polyamine effects on succinate-linked and alphaketoglutarate-linked rat liver mitochondrial respiration. Biochem Biophys Res Commun 77:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Chaffee RR, Arine RM, Rochelle RH, Walker CD (1978) Spermidine effects on rat kidney and liver mitochondrial respiration. In: Campbell RA, Morris DR, Bartos D, Daves GD, Bartos F (eds) Advances in polyamine research. Raven Press, New York, pp 123–128

    Google Scholar 

  • Chaffee RR, Arine RM, Rochelle RH (1979) The possible role of intracellular polyamines in mitochondrial metabolic regulation. Biochem Biophys Res Commun 86:293–299

    Article  CAS  PubMed  Google Scholar 

  • Clari G, Toninello A, Bordin L, Cattapan F, Piccinelli-Siliprandi D, Moret V (1994) Spermine effect on the binding of casein kinase I to the rat liver mitochondrial structures. Biochem Biophys Res Commun 205:389–395

    Article  CAS  PubMed  Google Scholar 

  • Farriol M, Segovia T, Venereo Y, Orta X (1999) Importance of the polyamines: review of the literature. Nutr Hosp 14:101–113

    CAS  PubMed  Google Scholar 

  • Frassineti C, Alderighi L, Gans P, Sabatini A, Vacca A, Ghelli S (2003) Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. Anal Bioanal Chem 376:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Goncharova NIu, Zelenina EV, Avramova LV (1994) Hexokinase isoenzyme II has a segment responsible for specific interaction of the enzyme with mitochondrial membranes. Biokhimiia 59:826–837

    CAS  PubMed  Google Scholar 

  • González-Bosch C, Marcote MJ, Hernández-Yago J (1991) Role of polyamines in the transport in vitro of the precursor of ornithine transcarbamylase. Biochem J 279:815–820

    PubMed  Google Scholar 

  • Grancara S, Battaglia V, Martinis P, Viceconte N, Agostinelli E, Toninello A, Deana R (2012) Mitochondrial oxidative stress induced by Ca2+ and monoamines: different behaviour of liver and brain mitochondria in undergoing permeability transition. Amino Acids 42:751–759

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Battaglia V, Colombatto S, Rossi CA, Simonian AR, Salvi M, Khomutov AR, Toninello A (2007) Inhibition of agmatine transport in liver mitochondria by new charge-deficient agmatine analogues. Biochem Soc Trans 35:401–404

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund H (1955) Steps in the formation and decomposition of some enzyme–substrate complexes. Disc Faraday Soc 20:167–173

    Article  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145

    Article  CAS  PubMed  Google Scholar 

  • Jensen BD, Gunter KK, Gunter TE (1986) The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch Biochem Biophys 248:305–323

    Article  CAS  PubMed  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

  • Mancon M, Siliprandi D, Toninello A (1990) On the presence of polyamines in mitochondria. It J Biochem 39:278–279

    Google Scholar 

  • Martinis P, Battaglia V, Grancara S, Dalla Via L, Di Noto V, Saccoccio S, Agostinelli E, Bragadin M, Grillo MA, Toninello A (2012) Further characterization of agmatine binding to mitochondrial membranes: involvement of imidazoline I2 receptor. Amino Acids 42:761–768

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanz P, Hopewell R, Brindley DN (1985) Spermine promotes the translocation of phosphatidate phosphohydrolase from the cytosol to the microsomal fraction of rat liver and it enhances the effects of oleate in this respect. FEBS Lett 179:262–266

    Article  CAS  PubMed  Google Scholar 

  • Montañez R, Sánchez-Jiménez F, Aldana-Montes JF, Medina MA (2007) Polyamines: metabolism to systems biology and beyond. Amino Acids 33:283–289

    Article  PubMed  Google Scholar 

  • Nicchitta CV, Williamson JR (1984) Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem 259:12978–12983

    CAS  PubMed  Google Scholar 

  • Palmieri F, Klingenberg M (1979) Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol 56:279–301

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774

    CAS  PubMed  Google Scholar 

  • Pezzato E, Battaglia V, Brunati AM, Agostinelli E, Toninello A (2009) Ca2+-independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2+. Amino Acids 36:449–456

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol 55:547–569

    Article  CAS  PubMed  Google Scholar 

  • Salvi M, Toninello A (2003) Reciprocal effects between spermine and Mg2+ on their movements across the mitochondrial membrane. Arch Biochem Biophys 411:262–266

    CAS  PubMed  Google Scholar 

  • Salvi M, Toninello A (2004) Effects of polyamines on mitochondrial Ca2+ transport. Biochim Biophys Acta 1661:113–124

    CAS  PubMed  Google Scholar 

  • Salvi M, Battaglia V, Mancon M, Colombatto S, Cravanzola C, Calheiros R, Marques MP, Grillo MA, Toninello A (2006) Agmatine is transported into liver mitochondria by a specific electrophoretic mechanism. Biochem J 396:337–345

    CAS  PubMed  Google Scholar 

  • Saris NEL, Wikström MKF, Seppälä AJ (1969) The effects of oligoamines on cation binding in mitochondria. In: Ernster L, Drahota Z (eds) Mitochondria—structure and function. Academic Press, New York, pp 363–368

    Google Scholar 

  • Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med 41:1272–1281

    CAS  PubMed  Google Scholar 

  • Siliprandi N, Siliprandi D, Toninello A, Garlid K (1988) Polyamine transport in liver mitochondria. In: Palmieri F, Quagliariello E (eds) Molecular basis of biomembrane transport. Elsevier Science Publishers, Amsterdam, pp 155–162

    Google Scholar 

  • Tadolini B, Cabrini L, Piccinini G, Davalli PP, Sechi AM (1985) Determination of the polyamine content of rat heart mitochondria by the use of heparin-sepharose. Appl Biochem Biotechnol 11:173–176

    CAS  PubMed  Google Scholar 

  • Tassani V, Ciman M, Sartorelli L, Toninello A, Siliprandi D (1995) Polyamine content and spermine transport in rat-brain mitochondria. Neurosci Res Comm 16:11–18

    CAS  Google Scholar 

  • Toninello A, Di Lisa F, Siliprandi D, Siliprandi N (1985) Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate. Biochim Biophys Acta 815:399–404

    CAS  PubMed  Google Scholar 

  • Toninello A, Di Lisa F, Siliprandi D, Siliprandi N (1986) Action of spermine on phosphate transport in liver mitochondria. Arch Biochem Biophys 245:363–368

    CAS  PubMed  Google Scholar 

  • Toninello A, Miotto G, Siliprandi D, Siliprandi N, Garlid KD (1988a) On the mechanism of spermine transport in liver mitochondria. J Biol Chem 263:19407–19411

    CAS  PubMed  Google Scholar 

  • Toninello A, Siliprandi D, Castagnini P, Novello MC, Siliprandi N (1988b) Bidirectional transport of spermine across the inner membrane of liver mitochondria. Adv Exp Med Biol 250:491–496

    CAS  PubMed  Google Scholar 

  • Toninello A, Dalla Via L, Testa S, Siliprandi D, Siliprandi N (1990) Transport and action of spermine in rat heart mitochondria. Cardioscience 1:287–294

    CAS  PubMed  Google Scholar 

  • Toninello A, Siliprandi D, Dalla Via L, Siliprandi N (1991) Electrophoretic spermine transport and its effect on phosphate transport in liver mitochondria. Life Chem Rep 9:223–230

    CAS  Google Scholar 

  • Toninello A, Dalla Via L, Siliprandi D, Garlid KD (1992a) Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem 267:18393–18397

    CAS  PubMed  Google Scholar 

  • Toninello A, Dalla Via L, Testa S, Siliprandi D (1992b) Electrophoretic polyamine transport in rat liver mitochondria. Amino Acids 2:69–76

    CAS  PubMed  Google Scholar 

  • Toninello A, Dalla Via L, Stevanato R, Yagisawa S (2000) Kinetics and free energy profiles of spermine transport in liver mitochondria. Biochemistry 39:324–331

    CAS  PubMed  Google Scholar 

  • Toninello A, Salvi M, Mondovì B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    CAS  PubMed  Google Scholar 

  • Trumpower BL (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 265:11409–11412

    CAS  PubMed  Google Scholar 

  • Wan B, LaNoue KF, Cheung JY, Scaduto RC Jr (1989) Regulation of citric acid cycle by calcium. J Biol Chem 264:13430–13439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Department of Molecular Sciences and Nanosystems, Ca’ Foscari Univesrity of Venice, Italy, “Centrale del Latte” Vicenza, Italy, Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca) (EA), by Istituto Superiore di Sanità “Project Italy-USA” (EA), funds MIUR-PRIN (Cofin) (EA), Fondazione Enrico and Enrica Sovena for the scholarship for Giampiero Tempera and by Istituto Pasteur Fondazione Cenci Bolognetti (EA).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Toninello.

Additional information

S. Grancara and P. Martinis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grancara, S., Martinis, P., Manente, S. et al. Bidirectional fluxes of spermine across the mitochondrial membrane. Amino Acids 46, 671–679 (2014). https://doi.org/10.1007/s00726-013-1591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1591-0

Keywords

Navigation