Skip to main content

Advertisement

Log in

Chemical profiling of deoxyhypusine hydroxylase inhibitors for antimalarial therapy

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2014

Abstract

A first approach to discover new antimalarials has been recently performed in a combined approach with data from GlaxoSmithKline Tres Cantos Antimalarial Set, Novartis-GNF Malaria Box Data set and St. Jude Children’s Research Hospital. These data are assembled in the Malaria Box. In a first phenotypic forward chemical genetic approach, 400 chemicals were employed to eradicate the parasite in the erythrocytic stages. The advantage of phenotypic screens for the identification of novel chemotypes is that no a priori assumptions are made concerning a fixed target and that active compounds inherently have cellular bioavailability. In a first screen 40 mostly heterocyclic, highly active compounds (in nmol range of growth inhibition) were identified with EC50 values ≤2 μM against chloroquine-resistant Plasmodium falciparum strains and a therapeutic window ≥10 against two mammalian cell lines. 78 % of the compounds had no violations with the Lipinski Rule of 5 and only 1 % of the compounds showed cytotoxicity when applied at concentrations of 10 μM. This pre-selective step of parasitic eradication will be used further for a test of the Malaria Box with a potential in iron chelating capacity to inhibit deoxyhypusine hydroxylase (DOHH) from P. falciparum and vivax. DOHH, a metalloprotein which consists of ferrous iron and catalyzes the second step of the posttranslational modification at a specific lysine in eukaryotic initiation factor 5A (EIF-5A) to hypusine. Hypusine is a novel, non-proteinogenic amino acid, which is essential in eukaryotes and for parasitic proliferation. DOHH seems to be a “druggable” target, since it has only 26 % amino acid identity to its human orthologue. For a High-throughput Screening (HTS) of DOOH inhibitors, rapid and robust analytical tools are a prerequisite. A proteomic platform for the detection of hypusine metabolites is currently established. Ultra performance Liquid Chromatography enables the detection of hypusine metabolites with retention times of 7.4 min for deoxyhypusine and 7.3 min for hypusine. Alternatively, the analytes can be detected by their masses with gas chromatography/mass spectrometry or one-dimensional chromatography coupled to mass spectrometry. Moreover, the identified hits will be tracked further to test their efficacy in novel “in vitro assays”. Subsequently in vivo inhibition in a humanized mouse model will be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Atemnkeng VA, Pink M, Schmitz-Spanke S, Wu XJ, Dong LL, Zhao KH, May C, Laufer S, Langer B, Kaiser A (2013) Deoxyhypusine hydroxylase from plasmodium vivax, the neglected human malaria parasite: molecular cloning, expression and specific inhibition by the 5-LOX inhibitor zileuton. PLoS One 8(3):e58318. doi:10.1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basco LK, Le Bras J (1994) Short-term in vitro culture of plasmodium vivax and P. ovale for drug-susceptibility testing. Parasitol Res 80(3):262–264

    Article  CAS  PubMed  Google Scholar 

  • Cameron A, Read J, Tranter R, Winter VJ, Sessions RB, Brady RL, Vivas L, Easton A, Kendrick H, Croft SL, Barros D, Lavandera JL, Martin JJ, Risco F, García-Ochoa S, Gamo FJ, Sanz L, Leon L, Ruiz JR, Gabarró R, Mallo A, Gómez de las Heras F (2004) Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed antimalarial activity. J Biol Chem 23, 279(30):31429–31439

    Article  Google Scholar 

  • Craig AG, Grau GE, Janse C (2012) The role of animal models for research on severe malaria. PLoS Pathog 8(2):e1002401. doi:10.1371/journal.ppat.1002401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz CA, Allocco J, Powles MA, Yeung L, Donald RG, Anderson JW, Liberator PA (2006) Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor. Mol Biochem Parasitol 146(1):78–88

    Article  CAS  PubMed  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in plasmodium falciparum malaria. N Engl J Med 30, 361(5):455–467

    Article  Google Scholar 

  • Dyshlovoy SA, Naeth I, Venz S et al (2012) Proteomic profiling of germ cell cancer cells treated with aaptamine, a marine alkaloid with anti-proliferative activity. J Proteome Res 11(4):2316–2330

    Article  CAS  PubMed  Google Scholar 

  • Gamo FJ, Sanz LM, Vidal J, de Cozar C (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    Article  CAS  PubMed  Google Scholar 

  • Granchi C, Bertini S, Macchia M, Minutolo F (2010) Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem 17(7):672–697

    Article  CAS  PubMed  Google Scholar 

  • Guiguemde WA, Shelat AA, Garcia-Bustos JF, Diagana TT, Gamo FJ, Guy RK (2012) Global phenotypic screening for antimalarials. Chem Biol 19(1):116–129. doi:10.1016/j.chembiol.2012.01.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hauber I, Bevec D, Heukeshoven J, Krätzer F, Horn F, Choidas A, Harrer T, Hauber J (2005) Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy. J Clin Invest 115(1):76–85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann W, Reichart B, Ewald A, Müller E, Schmitt I, Stauber RH, Lottspeich F, Jockusch BM, Scheer U, Hauber J, Dabauvalle MC (2001) Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 152(5):895–910. doi:10.1083/jcb.152.5.895

    Article  CAS  PubMed  Google Scholar 

  • Husek P (1991) Rapid derivatization and gas chromatographic determination of amino acids. J Chromatogr 552:289–299

    Article  CAS  Google Scholar 

  • Kaiser A, Khomutov AR, Simonian A, Agostinelli E (2012) A rapid and robust assay for the determination of the amino acid hypusine as a possible biomarker for a high-throughput screening of antimalarials and for the diagnosis and therapy of different diseases. Amino Acids 42(5):1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Katoh M, Yokoi T (2007) Application of chimeric mice with humanized liver for predictive ADME. Drug Metab Rev 39(1):145–157

    Article  CAS  PubMed  Google Scholar 

  • Kerscher B, Nzukou E, Kaiser A (2010) Assessment of deoxyhypusine hydroxylase as a putative, novel drug target. Amino Acids 38(2):471–477

    Article  CAS  PubMed  Google Scholar 

  • Kossodo S, Grau GE (1993) Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol 151:4811–4820

    PubMed  Google Scholar 

  • Maier B, Tersey SA, Mirmira RG (2010) Hypusine: a new target for therapeutic intervention in diabetic inflammation. Discov Med 10(50):18–23

    PubMed  Google Scholar 

  • malERA Consultative Group on Drugs et al. (2011) A research agenda for malaria eradication: drugs. PLoS Med 8(1):1–9

    Google Scholar 

  • Mittal N, Subramanian G, Bütikofer P, Madhubala R (2013) Unique posttranslational modifications in eukaryotic translation factors and their roles in protozoan parasite viability and pathogenesis. Mol Biochem Parasitol 187(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Nie CQ, Bernard NJ, Schofield L, Hansen DS (2007) CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis. Infect Immun 75(5):2275–2282

    Google Scholar 

  • Park JH, Wolff EC, Park MH (2011) Assay of deoxyhypusine hydroxylase activity. Meth Mol Biol 720:207–216

    Article  CAS  Google Scholar 

  • Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TC, Krettli AU (2011) Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One 6(7):e21237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosorius O, Reichart B, Krätzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380

    CAS  PubMed  Google Scholar 

  • Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F (2010) The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 161:555–570

    Article  CAS  PubMed  Google Scholar 

  • Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 3, 329(5996):1175–1180

    Article  Google Scholar 

  • Sanchez CP, Pfahler J, Del Portillo HA, Lanzer M (2013) Transient transfection of plasmodium vivax blood-stage parasites. Meth Mol Biol 923:151–159

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA (2013) Pharmacological potential of biogenic amine-polyamine interplay beyond neurotransmission. Br J Pharmacol. doi:10.1111/bph.12109

    PubMed  Google Scholar 

  • Sasaki K, Abid MR, Miyazaki M (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett 384(2):151–154

    Article  CAS  PubMed  Google Scholar 

  • Schwentke A, Krepstakies M, Mueller AK, Hammerschmidt-Kamper C, Motaal BA, Bernhard T, Hauber J, Kaiser A (2012) In vitro and in vivo silencing of plasmodial dhs and eIf-5a genes in a putative, non-canonical RNAi-related pathway. BMC Microbiol 12:107. doi:10.1186/1471-2180-12-107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott P, Pearce E, Cheever AW, Coffman RL, Sher A (1989) Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev 1989(112):161–182

    Article  Google Scholar 

  • Shiba T, Mizote H, Kaneko T, Nakajima T, Kakimoto Y (1971) Hypusine, a new amino acid occurring in bovine brain. Isolation and structural determination. Biochim Biophys Acta 21, 244(3):523–531

    Article  Google Scholar 

  • Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TN, Willis P (2013) The open access malaria box: a drug discovery catalyst for neglected diseases. Plos One 8(6):e62906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutherland CJ, Tanomsing N, Nolder D et al (2010) Two non-recombining sympatric forms of the human malaria parasite plasmodium ovale occur globally. J Infect Dis 15, 201(10):1544–1550. doi:10.1086/652240

    Article  Google Scholar 

  • Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10:507–519

    Article  CAS  PubMed  Google Scholar 

  • White NJ (2008) Plasmodium knowlesi: the fifth human malaria parasite. Clin Infect Dis 46:172–173

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Purchio AF, Chen K et al (2003) A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Metab Dispos 31:1054–1064

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Kaiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Koschitzky, I., Kaiser, A. Chemical profiling of deoxyhypusine hydroxylase inhibitors for antimalarial therapy. Amino Acids 45, 1047–1053 (2013). https://doi.org/10.1007/s00726-013-1575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1575-0

Keywords

Navigation