Skip to main content

Advertisement

Log in

Design and synthesis of a reagent for solid-phase incorporation of the phosphothreonine mimetic (2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) into peptides in a bio-reversible phosphonyl-bis-pivaloyloxymethyl (POM) prodrug form

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Reported herein are the synthesis and solid-phase peptide incorporation of N-Fmoc-(2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid bis-pivaloyloxymethyl phosphoryl ester [Fmoc-Pmab(POM)2-OH, 2] as a phosphatase-stable phosphothreonine (pThr) mimetic bearing orthogonal protection suitable for the synthesis of Pmab-containing peptides having bio-reversible protection of the phosphonic acid moiety. This represents the first report of a bio-reversibly protected pThr mimetic in a form suitable for facile solid-phase peptide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

[α]D :

Specific rotation

BnBr:

Benzyl bromide

But :

tert-Butyl

Cbz:

Benzyloxycarbonyl

CH2Cl2 :

Dimethyl chloride

CH3CN:

Acetonitrile

DIPEA:

Diisopropylethylamine

DMF:

Dimethylformamide

ESI:

Electrospray ionization

EtOAc:

Ethyl acetate

F2Pmp:

Difluorophosphonomethylphenylalanine

Fmoc:

9-Fluorenylmethoxycarbonyl

Fmoc-OSu:

9-Fluorenylmethyl succinimidyl carbonate

HBTU:

1-O-Benzotriazole-N,N,N′,N′-tetramethyl-uromium- hexafluoro-phosphate

HCl:

Hydrochloric acid

His:

Histidine

HOBt:

1-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

HRMS:

High resolution mass spectra

Leu:

Leucine

LiOH:

Lithium hydroxide

MeOH:

Methanol

MgSO4 :

Magnesium sulfate

Mtt:

Methyltrityl

m/z :

Mass-to-charge ratio

NaHCO3 :

Sodium bicarbonate

NMP:

N-Methyl-2-pyrrolidone

NMR:

Nuclear magnetic resonance

PBD:

Polo box domain

Pd·C:

Palladium on carbon

PLE:

Porcine liver esterase

Plk1:

Polo-like kinase 1

Pmab:

(2S,3R)-2-Amino-3-methyl-4-phosphonobutyric acid

POM:

Pivaloyloxymethyl

POMI:

Pivaloyloxymethyl iodide

PPIs:

Protein-protein interactions

pSer:

Phosphoserine

pThr:

Phosphothreonine

pTyr:

Phosphotyrosine

Ser:

Serine

SPPS:

Solid-phase peptide synthesis

t ½ :

Half life

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TLC:

Thin layer chromatography

TMS:

Trimethylsilane

Trt:

Trityl

References

  • Arrendale A, Kim K, Choi J, Li W, Geahlen RL, Borch RF (2012) Synthesis of a phosphoserine mimetic prodrug with potent 14-3-3 protein inhibitory activity. Chem Biol 19:764–771

    Article  PubMed  CAS  Google Scholar 

  • Bandgar BP, Sarangdhar RJ, Viswakarma S, Ahamed FA (2011) Synthesis and biological evaluation of orally active prodrugs of indomethacin. J Med Chem 54:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz DB, Eggen M, Shen Q, Shoemaker RK (1996) Ready access to fluorinated phosphonate mimics of secondary phosphates. Synthesis of the (α,α-difluoroalkyl)phosphonate analogs of L-phosphoserine, L-phosphoallothreonine, and L-phosphothreonine. J Org Chem 61:4666–4675

    Article  PubMed  CAS  Google Scholar 

  • Boutselis IG, Yu X, Zhang Z-Y, Borch RF (2007) Synthesis and cell-based activity of a potent and selective protein tyrosine phosphatase 1B inhibitor prodrug. J Med Chem 50:856–864

    Article  PubMed  CAS  Google Scholar 

  • Burke TR Jr, Lee K (2003) Phosphotyrosyl mimetics in the development of signal transduction inhibitors. Acc Chem Res 36:426–433

    Article  PubMed  CAS  Google Scholar 

  • Eisele F, Owen DJ, Waldmann H (1999) Peptide conjugates as tools for the study of biological signal transduction. Bioorg Med Chem 7:193–224

    Article  PubMed  CAS  Google Scholar 

  • Elia AEH, Yaffe MB (2005) Phosphoserine/threonine binding domains. In: Cesare G (ed) Modular protein domains. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 163–179. doi:10.1002/3527603611.ch8

    Chapter  Google Scholar 

  • Hecker SJ, Erion MD (2008) Prodrugs of phosphates and phosphonates. J Med Chem 51:2328–2345

    Article  PubMed  CAS  Google Scholar 

  • Ladbury JE (2005) Protein–protein recognition in phosphotyrosine-mediated intracellular signaling. Protein Rev 3:165–184

    Article  CAS  Google Scholar 

  • Liu F, Park J-E, Lee KS, Burke TR Jr (2009) Preparation of orthogonally protected (2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) as a phosphatase-stable phosphothreonine mimetic and its use in the synthesis of polo-box domain-binding peptides. Tetrahedron 65:9673–9679

    Article  CAS  Google Scholar 

  • Liu F, Park J-E, Qian W-J, Lim D, Graber M, Berg T, Yaffe MB, Lee KS, Burke TR Jr (2011) Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat Chem Biol 7:595–601

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Park J-E, Qian W-J, Lim D, Scharow A, Berg T, Yaffe MB, Lee KS, Burke TR (2012a) Identification of high affinity polo-like kinase 1 (Plk1) polo-box domain binding peptides using oxime-based diversification. ACS Chem Biol 7:805–810

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Park J-E, Qian W-J, Lim D, Scharow A, Berg T, Yaffe MB, Lee KS, Burke TR (2012b) Peptoid-peptide hybrid ligands targeting the polo box domain of polo-like kinase 1. Chem Biochem 13:1291–1296

    CAS  Google Scholar 

  • Lu CHS, Liu K, Tan LP, Yao SQ (2012) Current chemical biology tools for studying protein phosphorylation and dephosphorylation. Chem Eur J 18:28–39

    Article  CAS  Google Scholar 

  • Mandal PK, Liao WSL, McMurray JS (2009) Synthesis of phosphatase-stable, cell-permeable peptidomimetic prodrugs that target the SH2 domain of Stat3. Org Lett 11:3394–3397

    Article  PubMed  CAS  Google Scholar 

  • Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kaluarachchi KK, Chen X, Bast RC, Liao WS, McMurray JS (2011) Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54:3549–3563

    Article  PubMed  CAS  Google Scholar 

  • Nair SA, Lee B, Hangauer DG (1995) Synthesis of orthogonally protected L-homocysteine and L-2-amino-4-phosphonobutanoic acid from L-homoserine. Synthesis (7):810–814

  • Otaka A, Mitsuyama E, Kinoshita T, Tamamura H, Fujii N (2000) Stereoselective synthesis of CF2-substituted phosphothreonine mimetics and their incorporation into peptides using newly developed deprotection procedures. J Org Chem 65:4888–4899

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi K, Eggen M, Maeng J-H, Shen Q, Berkowitz DB (2009) The alpha, alpha-difluorinated phosphonate L-pSer-analogue: an accessible chemical tool for studying kinase- dependent signal transduction. Chem Biol 16:928–936

    Article  PubMed  CAS  Google Scholar 

  • Perich JW (1994) Efficient Fmoc/solid-phase synthesis of Abu(P)-containing peptides using Fmoc-Abu(PO3Me2)-OH. Int J Pept Protein Res 44:288–294

    Article  PubMed  CAS  Google Scholar 

  • Schultz C (2003) Prodrugs of biologically active phosphate esters. Bioorg Med Chem 11:885–898

    Article  PubMed  CAS  Google Scholar 

  • Shapiro G, Buechler D, Ojea V, Pombo-Villar E, Ruiz M, Weber HP (1993) Synthesis of both d- and l-Fmoc-Abu[PO(OCH2CH:CH2)2]-OH for solid phase phosphonopeptide synthesis. Tetrahedron Lett 34:6255–6258

    Article  CAS  Google Scholar 

  • Srivastva DN, Farquhar D (1984) Bioreversible phosphate protective groups: synthesis and stability of model acyloxymethyl phosphates. Bioorg Chem 12:118–129

    Article  CAS  Google Scholar 

  • Stankovic CJ, Surendran N, Lunney EA, Plummer MS, Para KS, Shahripour A, Fergus JH, Marks JS, Herrera R, Hubbell SE, Humblet C, Saltiel AR, Stewart BH, Sawyer TK (1997) The role of 4-phosphonodifluoromethyl- and 4-phosphono-phenylalanine in the selectivity and cellular uptake of SH2 domain ligands. Bioorg Med Chem Lett 7:1909–1914

    Article  CAS  Google Scholar 

  • van de Weerdt BCM, Littler DR, Klompmaker R, Huseinovic A, Fish A, Perrakis A, Medema RH (2008) Polo-box domains confer target specificity to the Polo-like kinase family. Biochim Biophys Acta Mol Cell Res 1783:1015–1022

    Article  Google Scholar 

  • Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3:177–186

    Article  PubMed  CAS  Google Scholar 

  • Yun S-M, Moulaei T, Lim D, Bang JK, Park J-E, Shenoy SR, Liu F, Kang YH, Liao C, Soung N-K, Lee S, Yoon D-Y, Lim Y, Lee D-H, Otaka A, Appella E, McMahon JB, Nicklaus MC, Burke TR Jr, Yaffe MB, Wlodawer A, Lee KS (2009) Structural and functional analyses of minimal phosphopeptides targeting the polo-box domain of polo-like kinase 1. Nat Struct Mol Biol 16:876–882

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Etzkorn FA (2007) A phosphorylated prodrug for the inhibition of Pin1. Bioorg Med Chem Lett 17:6615–6618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, Center for Cancer Research, NCI-Frederick and the National Cancer Institute, National Institutes of Health.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence R. Burke Jr..

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, WJ., Burke, T.R. Design and synthesis of a reagent for solid-phase incorporation of the phosphothreonine mimetic (2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) into peptides in a bio-reversible phosphonyl-bis-pivaloyloxymethyl (POM) prodrug form. Amino Acids 45, 1143–1148 (2013). https://doi.org/10.1007/s00726-013-1567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1567-0

Keywords

Navigation