Skip to main content

Advertisement

Log in

Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Advances in genomic technologies, such as next generation sequencing and disease specific gene targeting through anti-sense, anti-gene, siRNA and microRNA approaches require the transport of nucleic acid drugs through the cell membrane. Membrane transport of DNA/RNA drugs is an inefficient process, and the mechanism(s) by which this process occurs is not clear. A pre-requisite for effective transport of DNA and RNA in cells is their condensation to nanoparticles of ~100 nm size. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major challenge. Multivalent cations, such as natural polyamines are excellent promoters of DNA/RNA condensation to nanoparticles. During the past 20 years, our laboratory has synthesized and tested several analogs of the natural polyamine, spermine, for their efficacy to provoke DNA condensation to nanoparticles. We determined the thermodynamics of polyamine-mediated DNA condensation, measured the structural specificity effects of polyamine analogs in facilitating the cellular uptake of oligonucleotides, and evaluated the gene silencing activity of DNA nanoparticles in breast cancer cells. Polyamine-complexed oligonucleotides showed a synergistic effect on target gene inhibition at the mRNA level compared to the use of polyamines and oligonucleotides as single agents. Ionic and structural specificity effects were evident in DNA condensation and cellular transportation effects of polyamines. In condensed DNA structures, correlation exists between the attractive and repulsive forces with structurally different polyamines and cobalt hexamine, indicating the existence of a common force in stabilizing the condensed structures. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinelli E (2012) Role of polyamines, their analogs and transglutaminases in biological and clinical perspectives. Amino Acids 42:397–409

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Przybytkowski E, Mondovi B, Averill-Bates DA (1994) Heat enhancement of cytotoxicity induced by oxidation products of spermine in Chinese hamster ovary cells. Biochem Pharmacol 48:1181–1186

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Przybytkowski E, Averill-Bates DA (1996) Glucose, glutathione, and cellular response to spermine oxidation products. Free Rad Biol Med 20:649–656

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, Toninello A (2004) The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids 27:347–358

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Condello M, Molinari A, Tempera G, Viceconte N, Arancia G (2009) Cytotoxicity of spermine oxidation products to multidrug resistant melanoma M14 ADR2 cells: sensitization by the MDL 72527 lysosomotropic compound. Intern J Oncol 35:485–498

    CAS  Google Scholar 

  • Agostinelli E, Marques MP, Calheiros R, Gl FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010a) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010b) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368

    CAS  PubMed  Google Scholar 

  • Akagi T, Baba M, Akashi M (2007) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48:6729–6747

    CAS  Google Scholar 

  • Akiyoshi K, Sunamoto J (1996) Supramolecular assembly of hydrophobized polysaccharides. Supramol Sci 3:157–163

    CAS  Google Scholar 

  • Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    CAS  Google Scholar 

  • Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SV, Sunamoto J (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320

    CAS  PubMed  Google Scholar 

  • Allison SA, Herr JC, Schurr JM (1981) Structure of viral φ29 DNA condensed by simple triamines: light scattering and electron microscopic studies. Biopolymers 20:469–488

    CAS  PubMed  Google Scholar 

  • Averill-Bates DA, Agostinelli E, Przybytkowski E, Mateescu MA, Mondovi B (1993) Cytotoxicity and kinetic analysis of purified bovine serum amine oxidase in the presence of spermine in Chinese hamster ovary cells. Arch Biochem Biophys 300:75–79

    CAS  PubMed  Google Scholar 

  • Baase WA, Staskus PW, Allison SA (1984) Precollapse of T7 DNA by spermidine at low ionic strength: a linear dichroism and intrinsic viscosity study. Biopolymers 23:2835–2851

    CAS  PubMed  Google Scholar 

  • Beauchemin R, N’soukpoé-Kossi CN, Thomas TJ, Thomas T, Carpentier R, Tajmir-Riahi HA (2007) Polyamine analogues bind human serum albumin. Biomacromolecules 8:3177–3183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beck A, Vijayanathan V, Thomas T, Thomas TJ (2013) Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT)·poly(dA)·poly(dT). Biochimie 95:1310–1318

    CAS  PubMed  Google Scholar 

  • Becker M, Misselwitz R, Damaschun H, Damaschun G, Zirwer D (1979) Spermine-DNA complexes build up metastable structures. Small-angle X-ray scattering and circular dichroism studies. Nucleic Acids Res 7:1297–1309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Behr JP (2012) Synthetic gene transfer vectors II: back to the future. Acc Chem Res 45:980–984

    CAS  PubMed  Google Scholar 

  • Blagbrough IS, Geall AJ, Neal AP (2003) Polyamines and novel polyamine conjugates interact with DNA in ways that can be exploited for non-viral gene therapy. Biochem Soc Trans 31:397–406

    CAS  PubMed  Google Scholar 

  • Blessing T, Remy JS, Behr JP (1998) Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc Natl Acad Sci USA 95:1427–1431

    CAS  PubMed  Google Scholar 

  • Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    CAS  PubMed  Google Scholar 

  • Byk G, Dubertret C, Escriou V, Frederic M, Jaslin G, Rangara R, Pitard B, Crouzet J, Wils P, Schwartz B, Scherman D (1998) Synthesis, activity and structure-activity relationship studies of novel cationic lipids for DNA transfer. J Med Chem 41:224–235

    Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    CAS  PubMed  Google Scholar 

  • Chen N, Murata S, Yoshikawa K (2005) Dramatic change in the tertiary structure of giant DNA without distortion of the secondary structure caused by pteridine-polyamine conjugates. Chemistry 11:4835–4840

    CAS  PubMed  Google Scholar 

  • Chen AM, Taratula O, Wei D, Yen HI, Thomas T, Thomas TJ, Minko T, He H (2010) Labile catalytic packaging of DNA/siRNA: control of gold nanoparticles “out” of DNA/siRNA complexes. ACS Nano 4:3679–3688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conwell CC, Vilfan ID, Hud NV (2003) Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength. Proc Natl Acad Sci USA 100:9296–9301

    CAS  PubMed  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    CAS  PubMed  Google Scholar 

  • D’Urso EM, Jean-Francois J, Doillon CJ, Fortier G (1995) Poly(ethylene glycol)-serum albumin hydrogel as matrix for enzyme immobilization: biomedical applications. Artif Cell Blood Substit Immobil Biotechnol 23:587–595

    Google Scholar 

  • Derouchey J, Hoover B, Rau DC (2013) A comparison of DNA compaction by arginine and lysine peptides: a physical basis for arginine rich protamines. Biochemistry 52:3000–3009

    CAS  PubMed  Google Scholar 

  • Díaz-Moscoso A, Vercauteren D, Rejman J, Benito JM, Ortiz Mellet C, De Smedt SC, Fernández JM (2010) Insights in cellular uptake mechanisms of pDNA-polycationic amphiphilic cyclodextrin nanoparticles (CDplexes). J Control Release 143:318–325

    PubMed  Google Scholar 

  • Dubeau S, Bourassa P, Thomas TJ, Tajmir-Riahi HA (2010) Biogenic and synthetic polyamines bind bovine serum albumin. Biomacromolecules 11:1507–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunlap D, Maggi A, Sori MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095–3101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eickbush TH, Moudrianakis EN (1978) The compaction of DNA helices into either continuous supercoils or folded-fiber rods and toroids. Cell 13:295–306

    CAS  PubMed  Google Scholar 

  • Essemine J, Hasni I, Carpentier R, Thomas TJ, Tajmir-Riahi HA (2011) Binding of biogenic and synthetic polyamines to β-lactoglobulin. Int J Biol Macromol 49:201–209

    CAS  PubMed  Google Scholar 

  • Fang Y, Hoh JH (1999) Cationic silanes stabilize intermediates in DNA condensation. FEBS Lett 459:173–176

    CAS  PubMed  Google Scholar 

  • Geall AJ, Eaton MA, Baker T, Catterall C, Blagbrough IS (1999) The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection. FEBS Lett 459:337–342

    CAS  PubMed  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethyleneimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275

    CAS  PubMed  Google Scholar 

  • Grandinetti G, Reineke TM (2012) Exploring the mechanism of plasmid DNA nuclear internalization with polymer-based vehicles. Mol Pharm 9(8):2256–2267

    Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    CAS  PubMed  Google Scholar 

  • Griffiths PC, Paul A, Khayat Z, Wan KW, King SM, Grillo I, Schweins R, Ferruti P, Franchini J, Duncan R (2004) Understanding the mechanism of action of poly(amidoamine)s as endosomolytic polymers: correlation of physicochemical and biological properties. Biomacromolecules 5:1422–1427

    CAS  PubMed  Google Scholar 

  • Grosberg AY, Kuznetsov DV (1992) Quantitative theory of the globule-to-coil transition. 2. Density-density correlation in a globule and the hydrodynamic radius of a macromolecule. Macromolecules 25:1980–1990

    CAS  Google Scholar 

  • Ha BY, Liu AJ (1998) Effect of non-pairwise-additive interactions on bundles of rod like polyelectrolytes. Phys Rev Lett 81:1011–1014

    CAS  Google Scholar 

  • Hud NV, Downing KH (2001) Cryoelectron microscopy of λ phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc Natl Acad Sci USA 98:14925–14930

    CAS  PubMed  Google Scholar 

  • Jean-François J, D’Urso EM, Fortier G (1997) Immobilization of l-asparaginase into a biocompatible poly(ethylene glycol)-albumin hydrogel: evaluation of performance in vivo. Biotechnol Appl Biochem 26:203–212

    PubMed  Google Scholar 

  • Jeong JH, Kim SW, Park TG (2007) Molecular design of functional polymers for gene therapy. Prog Polym Sci 32:1239–1274

    CAS  Google Scholar 

  • Jiang X, Qu W, Pan D, Ren Y, Williford JM, Cui H, Luijten E, Mao HQ (2013) Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv Mater 25:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kichler A, Leborgne C, Coeytaux E, Danos O (2001) Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 3:135–144

    CAS  PubMed  Google Scholar 

  • Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethyleneimines. Adv Drug Deliv Rev 53:342–358

    Google Scholar 

  • Korolev N, Lyubartsev A, Nordenskiold L (2010) Cation-induced polyelectrolyte–polyelectrolyte attraction in solutions of DNA and nucleosome core particles. Adv Colloid Interface Sci 158:32–47

    CAS  PubMed  Google Scholar 

  • Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiod L (2012) A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 40:2808–2821

    PubMed  Google Scholar 

  • Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    CAS  PubMed  Google Scholar 

  • Lin Z, Wang C, Feng X, Liu M, Li J, Bai C (1998) The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res 26:3228–3234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livolant F, Leforestier A (1996) Condensed phases of DNA: structures and phase transitions. Prog Polym Sci 21:1115–1164

    CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    CAS  PubMed  Google Scholar 

  • Magro M, Valle G, Russo U, Nodari L, Vianello F (2010) Inventors University of Padua, Magro M,Valle G, Vianello F. Assignees. Maghemite nanoparticles and method for preparing thereof. EU Patent n. PCT/EP2010/060486

  • Magro M, Sinigaglia G, Nodari L, Tucek J, Polakova K, Zdenĕk M, Cardillo S, Salviulo G, Russo U, Zboril R, Stevanato R, Vianello F (2011) Novel surface active maghemite nanoparticles: synthesis and characterization. Acta Biomater 8:2068–2076

    Google Scholar 

  • Mann A, Thakur G, Shukla V, Singh AK, Khanduri R, Naik R, Jiang Y, Kalra N, Dwarakanath BS, Langel U, Ganguli M (2011) Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies. Mol Pharm 8:1729–1741

    CAS  PubMed  Google Scholar 

  • Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    CAS  PubMed  Google Scholar 

  • McGregor C, Perrin C, Monck M, Camilleri P, Kirby AJ (2001) Rational approaches to the design of cationic gemini surfactants for gene delivery. J Am Chem Soc 123:6215–6220

    CAS  PubMed  Google Scholar 

  • McKenzie DL, Collard WT, Rice KG (1999) Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J Pept Res 54:311–318

    CAS  PubMed  Google Scholar 

  • Mintzer M, Simanek EE (2009) Non viral vectors for gene delivery. Chem Rev 109:259–302

    CAS  PubMed  Google Scholar 

  • Montanari E, Capece S, Di Meo C, Meringolo M, Coviello T, Agostinelli E, Matricardi P (2013) Hyaluronic acid nanohydrogels as a useful tool for BSAO immobilization in the treatment of melanoma cancer cells. Macromol Biosci. doi:10.1002/mabi.201300114

  • N’soukpoé-Kossi CN, Ouameur AA, Thomas T, Thomas TJ, Tajmir-Riahi HA (2009) Interaction of tRNA with antitumor polyamine analogues. Biochem Cell Biol 87:621–630

    PubMed  Google Scholar 

  • Nakai T, Hirakura T, Sakurai Y, Shimoboji T, Ishigai M, Akiyoshi K (2012) Injectable hydrogel for sustained protein release by salt-induced association of hyaluronic acid nanogel. Macromol Biosci 12:475–483

    CAS  PubMed  Google Scholar 

  • Nayvelt I, Thomas T, Thomas TJ (2007) Mechanistic differences in DNA nanoparticle formation in the presence of oligolysines and poly-l-lysine. Biomacromolecules 8:477–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nayvelt I, Hyvönen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsäläinen J, Patel R, Keinänen TA, Thomas TJ (2010) DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage. Biomacromolecules 11:97–105

    CAS  PubMed  Google Scholar 

  • Nigg EA (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787

    CAS  PubMed  Google Scholar 

  • N’soukpoé-Kossi CN, Ouameur AA, Thomas T, Shirahata A, Thomas TJ, Tajmir-Riahi HADNA (2008) Interaction with antitumor polyamine analogues: a comparison with biogenic polyamines. Biomacromolecules 9:2712–2718

    PubMed  Google Scholar 

  • Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York

    Google Scholar 

  • Ouameur AA, Bourassa P, Tajmir-Riahi HA (2010) Probing tRNA interaction with biogenic polyamines. RNA 16:1968–1979

    CAS  PubMed  Google Scholar 

  • Park TG, Jeong JH, Kim SW (2006) Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 58:467–486

    CAS  PubMed  Google Scholar 

  • Pelta J, Livolant F, Sikorav JL (1996) DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 271:5656–5662

    CAS  PubMed  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    CAS  PubMed  Google Scholar 

  • Pettit MW, Griffiths P, Ferruti P, Richardson SC (2011) Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Ther Deliv 2:717–907

    Google Scholar 

  • Rau DC, Parsegian VA (1992) Direct measurement of the intermolecular forces between counterion-condensed DNA double helices: evidence for long range attractive hydration forces. Biophys J 61:246–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Record MT Jr, Anderson CF, Lohman TM (1978) Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys 11:103–178

    CAS  PubMed  Google Scholar 

  • Rouzina I, Bloomfield VA (1997) Competitive electrostatic binding of charged ligands to polyelectrolytes: practical approach using the non-linear Poisson-Boltzmann equation. Biophys Chem 64:3139–3155

    Google Scholar 

  • Rowat E, Williams RJ (1992) The binding of polyamines and magnesium to DNA. J Inorg Biochem 46:87–92

    Google Scholar 

  • Sala-Rabanal M, Li DC, Dake GR, Kurata HT, Inyushin M, Skatchkov SN, Nichols CG (2013) Polymine transport by the polyspecific organic transporters OCT1, OCT2 and OCT3. Mol Pharm 10:1450–1458

    CAS  PubMed  Google Scholar 

  • Saminathan M, Antony T, Shirahata A, Sigal LH, Thomas T, Thomas TJ (1999) Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry 38:3821–3830

    CAS  PubMed  Google Scholar 

  • Saminathan M, Thomas T, Shirahata A, Pillai CKS, Thomas TJ (2002) Polyamine structural effects on the induction and stabilization of liquid crystalline DNA: potential applications to DNA packaging, gene therapy and polyamine therapeutics. Nucleic Acids Res 30:3722–3731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffer DV, Lauffenburger DA (2000) Targeted synthetic gene delivery vectors. Curr Opin Mol Ther 2:155–161

    CAS  PubMed  Google Scholar 

  • Schellman JA, Parthasarathy N (1984) X-ray diffraction studies on cation-collapsed DNA. J Mol Biol 175:313–329

    CAS  PubMed  Google Scholar 

  • Sinigaglia G, Magro M, Miotto G, Cardillo S, Agostinelli E, Zboril R, Bidollari E, Vianello F (2012) Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomed 7:2249–2259

    CAS  Google Scholar 

  • Taylor JI, Hurst CD, Davies MJ, Sachsinger N, Bruce IJ (2000) Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J Chromatogr A 890:159–166

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA (1983) Collapse of DNA caused by trivalent cations: pH and ionic specificity effects. Biopolymers 22:1097–1106

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA (1984) Ionic and structural effects on the thermal helix-coil transition of DNA complexed with natural and synthetic polyamines. Biopolymers 23:1295–1306

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA (1985) Quasielastic laser light scattering and electron microscopy studies of the conformational transitions and condensation of poly(dA-dT)·poly(dA-dT). Biopolymers 24:2185–2194

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Thomas T (1993) Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32:14068–14074

    CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    CAS  PubMed  Google Scholar 

  • Thomas RM, Thomas T, Wada M, Sigal LH, Shirahata A, Thomas TJ (1999) Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure–activity relationships. Biochemistry 38:13328–13337

    CAS  PubMed  Google Scholar 

  • Todd BA, Parsegian VA, Shirahata A, Thomas TJ, Rau DC (2008) Attractive forces between cation condensed DNA double helices. Biophys J 94:4775–4782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayanathan V, Thomas T, Shirahata A, Thomas TJ (2001) DNA condensation by polyamines: a laser light scattering study of structural effects. Biochemistry 40:13644–13651

    CAS  PubMed  Google Scholar 

  • Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41:14085–14094

    CAS  PubMed  Google Scholar 

  • Vijayanathan V, Thomas T, Antony T, Shirahata A, Thomas TJ (2004) Formation of DNA nanoparticles in the presence of novel polyamine analogues: a laser light scattering and atomic force microscopic study. Nucleic Acids Res 32:127–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayanathan V, Lyall J, Thomas T, Shirahata A, Thomas TJ (2005) Ionic, structural, and temperature effects on DNA nanoparticles formed by natural and synthetic polyamines. Biomacromolecules 6:1097–1103

    CAS  PubMed  Google Scholar 

  • Vilar G, Tulla-Puche J, Albericio F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9:367–394

    CAS  PubMed  Google Scholar 

  • Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG (1997) Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug Chem 8:81–88

    CAS  PubMed  Google Scholar 

  • Widom J, Baldwin RL (1980) Cation-induced toroidal condensation of DNA. Studies with Co(NH3)6. J Mol Biol 144:431–453

    CAS  PubMed  Google Scholar 

  • Wilson RW, Bloomfield VA (1979) Counterion-induced condensation of deoxyribonucleic acid. A light scattering study. Biochemistry 18:2192–2196

    CAS  PubMed  Google Scholar 

  • Yan H, Li Z, Guo ZF, Lu ZL, Wang F, Wu LZ (2012) Effective and reversible DNA condensation induced by bifunctional molecules containing macrocyclic polyamines and naphthyl moieties. Bioorg Med Chem 20:801–808

    CAS  PubMed  Google Scholar 

  • Yoshikawa Y, Umezawa N, Imamura Y, Kanbe T, Kato N, Yoshikawa K, Imanaka T, Higuchi T (2013) Effective chiral discrimination of tetravalent polyamines on the compaction of single DNA molecules. Angew Chem Int Ed Engl 52:3712–3716

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca), by Istituto Superiore di Sanità “Project Italy-USA”, by funds MIUR-PRIN (Cofin) and by Istituto Pasteur -Fondazione Cenci Bolognetti (EA), and by a grant from the Foundation of the University of Medicine and Dentistry of New Jersey (PC28-11).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayanathan, V., Agostinelli, E., Thomas, T. et al. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids 46, 499–509 (2014). https://doi.org/10.1007/s00726-013-1549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1549-2

Keywords

Navigation