Skip to main content
Log in

Biocatalysts for cascade reaction: porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A cascade reaction between aldehydes and indole catalyzed by lipase from porcine pancreas Type II (PPL) in solvent mixture at 50 °C was reported for the first time. Some control experiments had been designed to demonstrate that the PPL was responsible for the cascade reaction. After the optimization of the stepwise process, a series of bis(indolyl)alkanes were prepared in moderate to excellent yields under the catalysis of PPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aleu J, Bustillo AJ, Hernandez-Galan R, Collado IG (2006) Biocatalysis applied to the synthesis of agrochemicals. Curr Org Chem 10(16):2037–2054

    Article  CAS  Google Scholar 

  • Azizi N, Torkian L, Saidi M (2007) Highly efficient synthesis of bis(indolyl)methanes in water. J Mol Catal A: Chem 275(1–2):109–112

    Article  CAS  Google Scholar 

  • Babtie A, Tokuriki N, Hollfelder F (2010) What makes an enzyme promiscuous? Curr Opin Chem Biol 14(2):200–207

    Article  PubMed  CAS  Google Scholar 

  • Bandgar BP, Shaikh KA (2003) Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions. Tetrahedron Lett 44(9):1959–1961

    Article  CAS  Google Scholar 

  • Branneby C, Carlqvist P, Hult K, Brinck T, Berglund P (2004) Aldol additions with mutant lipase: analysis by experiments and theoretical calculations. J Mol Catal B Enzym 31(4–6):123–128

    Article  CAS  Google Scholar 

  • Cai JF, Guan Z, He YH (2011) The lipase-catalyzed asymmetric C–C Michael addition. J Mol Catal B Enzym 68(3–4):240–244

    Article  CAS  Google Scholar 

  • Carlqvist P, Svedendahl M, Branneby C, Hult K, Brinck T, Berglund P (2005) Exploring the active-site of a rationally redesigned lipase for catalysis of michael-type additions. ChemBioChem 6(2):331–336

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty M, Ghosh N, Basak R, Harigaya Y (2002) Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindolylalkanes and vibrindole A. Tetrahedron Lett 43(22):4075–4078

    Article  CAS  Google Scholar 

  • Chakrabarty M, Ghosh N, Basak R, Harigaya Y (2004) A facile and efficientsynthesis of 2,2-bis(3′/2′-indolyl)ethylamines and three bisindolic natural products. Synthetic Commun 34(3):421–434

    Article  CAS  Google Scholar 

  • Chen XA, Liu BK, Kang H, Lin XF (2011) A tandem aldol condensation/dehydration co-catalyzed by acylase and N-heterocyclic compounds in organic media. J Mol Catal B Enzym 68(1):71–76

    Article  CAS  Google Scholar 

  • Das PJ, Das J (2012) Synthesis of aryl/alkyl(2,2′-bis-3-methylindolyl)methanes and aryl(3,3′-bis indolyl)methanes promoted by secondary amine based ionic liquids and microwave irradiation. Tetrahedron Lett 53(35):4718–4720

    Article  CAS  Google Scholar 

  • Feng XW, Li C, Wang N, Li K, Zhang WWi, Wang Z et al (2009) Lipase-catalysed decarboxylative aldol reaction and decarboxylative Knoevenagel reaction. Green Chem 11(12):1933–1936

    Article  CAS  Google Scholar 

  • Firouzabadi H, Iranpoor Nr, Jafari AA (2006) Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green lewis acid catalyzes efficient preparation of indole derivatives. J Mol Catal A: Chem 244(1–2):168–172

    Article  CAS  Google Scholar 

  • Fukuyama T, Chen XQ (1994) Stereocontrolled synthesis of (-)-Hapalindole G. J Am Chem Soc 116(7):3125–3126

    Article  CAS  Google Scholar 

  • Gatti-Lafranconi P, Hollfelder F (2013) Flexibility and reactivity in promiscuous enzymes. ChemBioChem 14(3):285–292

    Article  PubMed  CAS  Google Scholar 

  • Gruber-Khadjawi M, Purkarthofer T, Skranc W, Griengl H (2007) Hydroxynitrile lyase-catalyzed enzymatic nitroaldol (henry) reaction. Adv Synth Catal 349(8–9):1445–1450

    Article  CAS  Google Scholar 

  • Guillermo PC, Jose-Guadalupe GE, Jose-Luis GR, Cecilio AT (2003) Infrared-assisted eco-friendly selective synthesis of diindolylmethanes. Green Chem 5(3):337–339

    Article  Google Scholar 

  • Guinchard X, Vallée Y, Denis J (2007) Total synthesis of marine sponge bis(indole) alkaloids of the topsentin class. J Org Chem 72(10):3972–3975

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Sekifuji M, Hoshi T, Qiao K, Yokoyama C (2007) Synthesis of bis(indolyl)methanes catalyzed by acidic ionic liquid immobilized on silica (ILIS). Synlett 08:1320–1322

    Article  Google Scholar 

  • He YH, Hu W, Guan Z (2012) Enzyme-catalyzed direct three-component aza-diels-alder reaction using hen egg white lysozyme. J Org Chem 77(1):200–207

    Article  PubMed  CAS  Google Scholar 

  • Hibino S, Choshi T (2001) Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 18(1):66–87

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Guan Z, Deng X, He YH (2012) Enzyme catalytic promiscuity: the papain-catalyzed Knoevenagel reaction. Biochimie 94(3):656–661

    Article  PubMed  CAS  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25(5):231–238

    Article  PubMed  CAS  Google Scholar 

  • Humble MS, Berglund P (2011) Biocatalytic promiscuity. Eur J Org Chem 19:3391–3401

    Article  Google Scholar 

  • Ji SJ, Zhou MF, Gu DG, Wang SY, Loh TP (2003) Efficient synthesis of bis(indolyl)methanes catalyzed by lewis acids in ionic liquids. Synlett 13:2077–2079

    Article  Google Scholar 

  • Ji SJ, Zhou MF, Gu DG, Jiang ZQ, Loh TP (2004) Efficient Fe-III-catalyzed synthesis of bis(indolyl)methanes in ionic liquids. Eur J Org Chem 7:1584–1587

    Article  Google Scholar 

  • Jon-Paul-Selvam J, Srinivasulu M, Suryakiran N, Suresh V, Malla-Reddy S, Venkateswarlu Y (2008) Lanthanum(III) nitrate hexahydrate: a versatile reagent for the synthesis of bis(indolyl)methanes under solvent-Free conditions. Synthetic Commun 38(11):1760–1767

    Article  Google Scholar 

  • Kamble VT, Bandgar BP, Bavikar SN (2007a) Highly efficient synthesis of bis(indolyl)methanes catalyzed by sodium tetrafluoroborate. Chin J Chem 25(1):13–15

    Article  CAS  Google Scholar 

  • Kamble VT, Kadam KR, Joshi NS, Muley DB (2007b) HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun 8(3):498–502

    Article  CAS  Google Scholar 

  • Kantam ML, Aziz K, Likhar PR (2004) Bis(cyclopentadienyl)zirconium dichloride for alkylation of heteroaromatics and synthesis of bis(indolyl)methanes. Catalysis Lett 98(2–3):117–121

    Article  Google Scholar 

  • Kantam ML, Laha S, Yadav J, Sreedhar B (2006) Friedel–Crafts alkylation of indoles with epoxides catalyzed by nanocrystalline titanium(IV) oxide. Tetrahedron Lett 47(35):6213–6216

    Article  CAS  Google Scholar 

  • Karthik M, Tripathi AK, Gupta NM, Palanichamy M, Murugesan V (2004) Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catal Commun 5(7):371–375

    Article  CAS  Google Scholar 

  • Kazlauskas RJ (2005) Enhancing catalytic promiscuity for biocatalysis. Curr Opin Chem Biol 9(2):195–201

    Article  PubMed  CAS  Google Scholar 

  • Khalafi-Nezhad A, Parhami A, Zare A, Zare ARM, Hasaninejad A, Panahi F (2008) Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of bis(indolyl)methanes under solvent-free conditions in neutral media. Synthesis 4:617–621

    Article  Google Scholar 

  • Kidwai M, Bura N, Mishra NK (2011) Niobium(V) pentachloride-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions. Indian J Chem B 50(2):229–232

    Google Scholar 

  • Kitazume T, Ikeya T, Murata K (1986) Synthesis of optically active trifluorinated compounds: asymmetric Michael addition with hydrolytic enzymes. J Chem Soc, Chem Commun(17):1331–1333

  • Klossowski S, Wiraszka B, Berlozecki S, Ostaszewski R (2013) Model studies on the first enzyme-catalyzed ugi reaction. Org Lett 15(3):566–569

    Article  PubMed  CAS  Google Scholar 

  • Koshima H, Matsusaka W (2002) N-bromosuccinimide catalyzed condensations of indoles with carbonyl compounds under solvent-free conditions. J Heterocycl Chem 39(5):1089–1091

    Article  CAS  Google Scholar 

  • Krishnammagari SK, Chinnapareddy BR, Balam SK, Kambam S, Cirandur SR (2012) Micelle promoted synthesis of bis-(indolyl)methanes. Lett Org Chem 9(4):294–299

    Article  Google Scholar 

  • Lei P, Abdelrahim M, Cho SD, Liu SX, Chintharlapalli S, Safe S (2008) 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through activation of c-jun N-terminal kinase. Carcinogenesis 29(6):1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Li C, Feng XW, Wang N, Zhou YY, Yu XQ (2008) Biocatalytic promiscuity: the first lipase-catalysed asymmetric aldol reaction. Green Chem 10(6):616–618

    Article  CAS  Google Scholar 

  • Liu ZQ, Liu BK, Wu Q, Lin XF (2011) Diastereoselective enzymatic synthesis of highly substituted 3,4-dihydropyridin-2-ones via domino Knoevenagel condensation-Michael addition-intramolecular cyclization. Tetrahedron 67(50):9736–9740

    Article  CAS  Google Scholar 

  • Lou FW, Xu JM, Liu BK, Wu Q, Pan Q, Lin XF (2007) Highly selective anti-Markovnikov addition of thiols to vinyl ethers under solvent- and catalyst-free conditions. Tetrahedron Lett 48(50):8815–8818

    Article  CAS  Google Scholar 

  • Lou FW, Liu BK, Wu Q, Lv DS, Lin XF (2008) Candida antarctica lipase B (CAL-B)-catalyzed carbon-sulfur bond addition and controllable selectivity in organic media. Adv Synth Catal 350(13):1959–1962

    Article  CAS  Google Scholar 

  • Lou FW, Liu BK, Wang JL, Pan Q, Lin XF (2009) Controllable enzymatic Markovnikov addition and acylation of thiols to vinyl esters. J Mol Catal B Enzym 60(1–2):64–68

    Article  CAS  Google Scholar 

  • Lounasmaa M, Tolvanen A (2000) Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat Prod Rep 17(2):175–191

    Article  PubMed  CAS  Google Scholar 

  • Ma SM, Yu SC, Peng ZH (2005) Sc(OTf)3-catalyzed efficient synthesis of β,β-bis(indolyl) ketones by the double indolylation of acetic acid 2-methylene-3-oxobutyl ester. Org Biomol Chem 3(10):1933–1936

    Article  PubMed  CAS  Google Scholar 

  • Martínez R, Espinosa A, Tárraga A, Molina P (2008) Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron 64(9):2184–2191

    Article  Google Scholar 

  • Mehrazma S, Azizi N, Saidi MR (2006) Clean and facile condensations reaction of indoles and carbonyl compounds under solvent-free conditions. Lett Org Chem 3(2):161–164

    Article  CAS  Google Scholar 

  • Mohit LD, Pulak JB (2006) An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature. Tetrahedron Lett 47(9):1441–1443

    Article  Google Scholar 

  • Mona HS (2007) Titania (TiO2)-catalyzed expedient, solventless and mild synthesis of bis(indolyl)methanes. Acta Chim Slov 54(2):354–359

    Google Scholar 

  • Nadkarni SV, Gawande MB, Jayaram RV, Nagarkar JM (2008) Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catal Commun 9(8):1728–1733

    Article  CAS  Google Scholar 

  • Niknam K, Zolfigol MA, Sadabadi T, Nejati A (2006) Preparation of indolylmethanes catalyzed by metal hydrogen sulfates. J Iran Chem Soc 3(4):318–322

    Article  CAS  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25(2):66–73

    Article  PubMed  CAS  Google Scholar 

  • Pradhan PK, Dey S, Giri VS, Jaisankar P (2005) InCl3-HMTA as a methylene donor: one-pot synthesis of diindolylmethane (DIM) and its derivatives. Synthesis(11):1779–1782

  • Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D et al (2006) A Biocatalytic Henry Reaction—The Hydroxynitrile Lyase from Hevea brasiliensis Also Catalyzes Nitroaldol Reactions. Angew Chem Int Ed 45(21):3454–3456

    Article  CAS  Google Scholar 

  • Safe S, Papineni S, Chintharlapalli S (2008) Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett 269(2):326–338

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  PubMed  CAS  Google Scholar 

  • Serafimov M Jr, Gillingham D, Kuster S, Hilvert D (2008) The Putative Diels–Alderase Macrophomate Synthase is an Efficient Aldolase. J Am Chem Soc 130(25):7798–7799

    Article  PubMed  CAS  Google Scholar 

  • Sharma GVM, Janardhan-Reddy J, Sree-Lakshmi P, Radha-Krishna P (2004) A versatile and practical synthesis of bis(indolyl)methanes/bis(indolyl)glycoconjugates catalyzed by trichloro-1,3,5-triazine. Tetrahedron Lett 45(41):7729–7732

    Article  CAS  Google Scholar 

  • Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z (2009) Bis- and trisindolylmethanes (Bims and Tims). Chem Rev 110(4):2250–2293

    Article  Google Scholar 

  • Silveira CC, Mendes SR, Líbero FM, ErJ Lenardão, Perin G (2009) Glycerin and CeCl3·7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett 50(44):6060–6063

    Article  CAS  Google Scholar 

  • Svedendahl M, Hult K, Berglund P (2005) Fast carbon–carbon bond formation by a promiscuous lipase. J Am Chem Soc 127(51):17988–17989

    Article  PubMed  CAS  Google Scholar 

  • Taglieber A, Hoebenreich H, Carballeira JD, Mondiere R, Reetz MT (2007) Alternate-site enzyme promiscuity. Angew Chem Int Ed 46(45):8597–8600

    Article  CAS  Google Scholar 

  • Tayebee R, Amini MM, Nehzat F, Sadeghi O, Armaghan M (2013) H5PW10V2O40/pyridino-SBA-15 as a highly recyclable, robust and efficient inorganic-organic hybrid material for the catalytic preparation of bis(indolyl)methanes. J Mol Catal A: Chem 366:140–148

    Article  CAS  Google Scholar 

  • Torre O, Alfonso I, Gotor V (2004) Lipase catalysed Michael addition of secondary amines to acrylonitrile. Chem Commun 7(15):1724–1725

    Article  Google Scholar 

  • Wang SY, Ji SJ (2008) Facile synthesis of bis(indolyl)methanes catalyzed by ferric dodecyl sulfonate [Fe(DS)3] in water at room temperature. Synthetic Commun 38(8):1291–1298

    Article  CAS  Google Scholar 

  • Wang JL, Li X, Xie HY, Liu BK, Lin XF (2010) Hydrolase-catalyzed fast Henry reaction of nitroalkanes and aldehydes in organic media. J Biotechnol 145(3):240–243

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Liu BK, Yin C, Wu Q, Lin XF (2011) Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent. Tetrahedron 67(14):2689–2692

    Article  CAS  Google Scholar 

  • Wu WB, Wang N, Xu JM, Wu Q, Lin XF (2005) Penicillin G acylase catalyzed Markovnikov addition of allopurinol to vinyl ester. Chem Commun 18:2348–2350

    Article  Google Scholar 

  • Wu WB, Xu JM, Wu Q, Lv DS, Lin XF (2006) Promiscuous acylases-catalyzed markovnikov addition of N-heterocycles to vinyl esters in organic media. Adv Synth Catal 348(4–5):487–492

    Article  CAS  Google Scholar 

  • Wu Q, Liu BK, Lin XF (2010) Enzymatic promiscuity for organic synthesis and cascade process. Curr Org Chem 14(17):1966–1988

    Article  CAS  Google Scholar 

  • Xia M, Wang SH, Yuan WB (2004) Lewis acid catalyzed electrophilic substitution of indole with aldehydes and Schiff’s bases under microwave solvent-free irradiation. Synthetic Commun 34(17):3175–3182

    Article  CAS  Google Scholar 

  • Xl Mi, Luo SZ, He JQ, Cheng JP (2004) Dy(OTf)3 in ionic liquid: an efficient catalytic system for reactions of indole with aldehydes/ketones or imines. Tetrahedron Lett 45(23):4567–4570

    Article  Google Scholar 

  • Xu JM, Zhang F, Liu BK, Wu Q, Lin XF (2007) Promiscuous zinc-dependent acylase-mediated carbon–carbon bond formation in organic media. Chem Commun 20:2078–2080

    Article  Google Scholar 

  • Xu HF, Zi Y, Xu XP, Wang SY, Ji SJ (2013) TFA-catalyzed C–N bond activation of enamides with indoles: efficient synthesis of 3,3-bisindolylpropanoates and other bisindolylalkanes. Tetrahedron 69(5):1600–1605

    Article  CAS  Google Scholar 

  • Xue Y, Li LP, He YH, Guan Z (2012) Protease-catalysed direct asymmetric Mannich reaction in organic solvent. Sci Rep 2:761

    PubMed  Google Scholar 

  • Yadav JS, Reddy BVS, Murthy C, Kumar GM, Madan C (2001) Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)methanes. Synthesis 5:783–787

    Article  Google Scholar 

  • Yang YL, Xie ZF, Wang JD (2011) CrCl3·6H2O/hydrogenated bis-schiff base as a new efficient catalyst system for synthesis of bis(indoly) methane. Chin J Chem 29(10):2091–2096

    Article  CAS  Google Scholar 

  • Zhang ZH, Yin L, Wang YM (2005) An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride. Synthesis 12:1949–1954

    Google Scholar 

  • Zolfigol M, Salehi P, Shiri M, Sayadi A, Abdoli A, Keypour H et al (2008) A simple and efficient route for the synthesis of di and tri(bis(indolyl) methanes) as new triarylmethanes. Mol Divers 12(3–4):203–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge generous financial support from National Natural Science Foundation of China (No. 21072172, 21272208) and the Zhejiang Provincial Natural Science Foundation (Project No. 2010-Z4090225).

Conflict of interest

We declare that we have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wu or XianFu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Liu, Z., Chen, X. et al. Biocatalysts for cascade reaction: porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes. Amino Acids 45, 937–945 (2013). https://doi.org/10.1007/s00726-013-1547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1547-4

Keywords

Navigation