Skip to main content
Log in

Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Fig. 5
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38

Similar content being viewed by others

References

  • Aceña JL, Sorochinsky AE, Soloshonok VA (2012) Recent advances in asymmetric synthesis of α-(trifluoromethyl)-containing α-amino acids. Synthesis 44:1591–1602

    Google Scholar 

  • Alves I, Cowell S, Lee YS, Tang X, Davis P, Porreca F, Hruby VJ (2004) A novel 3-step enantioselective synthesis of pyrenylalanine with subsequent incorporation into opioid, CCK, and melanotropin ligands. Biochem Biophys Res Commun 318:335–340

    Article  PubMed  CAS  Google Scholar 

  • Belokon YN (1992) Chiral complexes of Ni(II), Cu(II), and Cu(I) as reagents, catalysts and receptors for asymmetric synthesis and chiral recognition of amino acids. Pure Appl Chem 64:1917–1924

    Article  CAS  Google Scholar 

  • Belokon YN, Zel’tzer E, Bakhmutov VI, Saporovskaya MB, Ryzhov MG, Yanovsky AI, Struchkov YT, Belikov VM (1983) Asymmeric synthesis of threonine and partial resolution and retroracemization of α-amino acids via copper(II) complexes of their Schiff bases with (S)-2-N-(N′-benzylprolyl)aminobenzaldehyde and (S)-2-N-(N′-benzylprolyl)aminoacetophenone. Crystal and molecular structure of a copper(II) complex of glycine Schiff base with (S)-2-N-(N′benzylprolyl)aminoacetophenone. J Am Chem Soc 105:2010–2017

    Article  CAS  Google Scholar 

  • Belokon YN, Bulychev AG, Vitt SV, Struchkov YT, Batsanov AS, Timofeeva TV, Tsyryapkin VA, Ryzhov MC, Lysova LA, Bakhmutov VI, Belikov VM (1985a) General method of diastereo- and enantioselective synthesis of β-hydroxy-α-amino acids by condensation of aldehydes and ketones with glycine. J Am Chem Soc 107:4252–4259

    Article  CAS  Google Scholar 

  • Belokon YN, Chernoglazova NI, Kochetkov CA, Garbalinskaya NS, Belikov VM (1985b) Preparation of optically pure α-methyl-α-amino acids via alkyñation of the nickel(II) Schiff base of (R,S)-alanine with (S)-2-N-(N′-benzylprolyl)aminobenzledehyde. J Chem Soc Chem Commun 171–172

  • Belokon YN, Chernoglazova NI, Botsanov AS, Garbalinskaya NS, Bakhmutov VI, Struchkov YT, Belikov VM (1987) Asymmetric synthesis of (2S,4S)-2,4-diaminoglutaric and (2S,3S)-2,3-diamino-2,3-dimethylsuccinic acids using chiral Ni(II) complexes. Russ Chem Bull 36:779–784

    Article  Google Scholar 

  • Belokon YN, Bakhmutov VI, Chernoglazova NI, Kochetkov KA, Vitt SV, Garbalinskaya NS, Belikov VM (1988) General method for the asymmetric synthesis of α-amino acids via alkylation of the chiral nickel(II) Schiff base complexes of glycine and alanine. J Chem Soc Perkin Trans 1:305–311

    Google Scholar 

  • Belokon YN, Kochetkov KA, Churkina TD, Ikonnikov NS, Orlova SA, Smirnov VV, Chesnokov AA (1997) Asymmetric Michael addition of a glycine synthon to methyl methacrylate, mediated by disodium TADDOLate. Mendeleev Commun 7:137–138

    Article  Google Scholar 

  • Belokon YN, Tararov VI, Maleev VI, Savel’eva TF, Ryzhov MG (1998) Improved procedures for the synthesis of (S)-2-[N-(N′-benzylprolyl)amino]-benzophenone (BPB) and Ni(II) complexes of Schiff’s bases derived from BPB and amino acids. Tetrahedron Asymmetry 9:4249–4252

    Article  CAS  Google Scholar 

  • Belokon YN, Kochetkov KA, Churkina TD, Ikonnikov NS, Larionov OV, Harutyunyan S, North M, Vyskošil Š, Kagan HB (2001) Highly efficient catalytic synthesis of α-amino acids under phase-transfer conditions with a novel catalyst/substrate pair. Angew Chem Int Ed 40:1948–1951

    Article  CAS  Google Scholar 

  • Belokon YN, Maleev VI, Petrrosyan AA, Savel’eva TF, Ikonnikov NS, Peregudov AS, Khrustalev VN, Saghiyan AS (2002) Halo-substituted (S)-N-(2-benzoylphenyl)-1-benzylpyrolidine-2-carboxamides as new chiral auxiliaries for the asymmetric synthesis of (S)-α-amino acids. Russ Chem Bull 51:1593–1599

    Article  CAS  Google Scholar 

  • Belokon YN, Bespalova NB, Churkina TD, Cisarova I, Ezernitskaya MG, Harutyunyan SR, Hrdina R, Kagan HB, Kocovsky P, Kochetkov KA, Larionov OV, Lyssenko KA, North M, Polasek M, Peregudov AS, Prisyazhnyuk VV, Vyskocil S (2003a) Synthesis of α-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases. J Am Chem Soc 125:12860–12871

    Article  PubMed  CAS  Google Scholar 

  • Belokon YN, Kochetkov KA, Borkin DA (2003b) Asymmetric synthesis of unusual α-amino acids. Mendeleev Commun 13:132–134

    Article  CAS  Google Scholar 

  • Boyall D, Frantz DE, Carreira EM (2002) Efficient enantioselective additions of terminal alkynes and aldehydes under operationally convenient conditions. Org Lett 4:2605–2606

    Article  PubMed  CAS  Google Scholar 

  • Burck S, van Assema SGA, Lastdrager B, Slootweg JC, Ehlers AW, Otero JM, Dacunha-Marinho B, Llamas-Saiz AL, Overhand M, van Raaij MJ, Lammertsma K (2009) Bisphosphine-functionalized cyclic decapeptides based on the natural product gramicidin S: a potential scaffold for transition-metal coordination. Chem Eur J 15:8134–8145

    Article  PubMed  CAS  Google Scholar 

  • Cai C, Yamada T, Tiwari R, Hruby VJ, Soloshonok VA (2004) Application of (S)- and (R)-methyl pyroglutamates as inexpensive, yet highly efficient chiral auxiliaries in the asymmetric Michael addition reactions. Tetrahedron Lett 45:6855–6858

    Article  CAS  Google Scholar 

  • Chaykovski MM, Bae LC, Cheng M-C, Murray JH, Tortolani KE, Zhang R, Seshadri K, Findlay JHBC, Hsieh S-Y, Kalverda AP, Homans SW, Miles Brown JM (2003) Methyl side-chain dynamics in proteins using selective enrichment with a single isotopomer. J Am Chem Soc 125:15767–15771

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang L, Fahmi NE, Benkovic SJ, Hecht SM (2012) Two pyrenylalanines in dihydrofolate reductase form an excimer enabling the study of protein dynamics. J Am Chem Soc 134:18883–18885

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla R, Mazón P, Nájera C (2000) Asymmetric synthesis of α-amino acids using polymer-supported Cinchona alkaloid-derived ammonium salts as chiral phase-transfer catalysts. Tetrahedron Asymmetry 11:3277–3281

    Article  CAS  Google Scholar 

  • Collet S, Bauchat P, Danion-Bougot R, Danion D (1998) Stereoselective, nonracemic synthesis of ω-borono-α-amino acids. Tetrahedron Asymmetry 9:2121–2131

    Article  CAS  Google Scholar 

  • Collet S, Carreaux F, Boucher J-L, Pethe S, Lepoivre M, Danion-Bougot R, Danion D (2000) Synthesis and evaluation of ω-borono-α-amino acids as active site probes of arginase and nitric oxide synthases. J Chem Soc Perkin Trans 1, pp 177–182

  • Coppola GM, Schuster HF (1987) Asymmetric synthesis: construction of chiral molecules using amino acids. Wiley-Interscience, New York

    Google Scholar 

  • Corey EJ, Xu F, Noe MC (1997) A rational approach to catalytic enantioselective enolate alkylation using a structurally rigidified and defined chiral quaternary ammonium salt under phase transfer conditions. J Am Chem Soc 119:12414–12415

    Article  CAS  Google Scholar 

  • De BB, Thomas NR (1997) Optimization of the retroracemisation procedure for α-amino acids using (S)-2-[(N-alkylprolyl)amino]benzophenones, recyclable chiral auxiliaries. Tetrahedron Asymmetry 8:2687–2691

    Article  CAS  Google Scholar 

  • Deng G, Wang J, Zhou Y, Jiang H, Liu H (2007) One-pot, large-scale synthesis of nickel(II) complexes derived from 2-[N-(α-picolyl)amino]benzophenone (PABP) and α- or β-amino acids. J Org Chem 72:8932–8934

    Article  PubMed  CAS  Google Scholar 

  • Deng G, Ye D, Li Y, He L, Zhou Y, Wang J, Li J, Jiang H, Liu H (2008) Synthesis of (S)-, (R)-, and (rac)-2-amino-3,3-bis(4-fluorophenyl)propanoic acids and an evaluation of the DPP IV inhibitory activity of Denagliptin diastereomers. Tetrahedron 64:10512–10516

    Article  CAS  Google Scholar 

  • Duthaler RO (1994) Recent developments in the stereoselective synthesis of α-amino acids. Tetrahedron 50:1539–1560

    Article  CAS  Google Scholar 

  • Ellis TK, Soloshonok VA (2006) Design and synthesis of a new generation of ‘NH’–Ni(II) complexes of glycine Schiff bases and their unprecedented C–H vs. N–H chemoselectivity in alkyl halide alkylations and Michael addition reactions. Synlett 17(4):533–538

    Google Scholar 

  • Ellis TK, Martin CH, Ueki H, Soloshonok VA (2003a) Efficient, practical synthesis of symmetrically α, α-disubstituted α-amino acids. Tetrahedron Lett 44:1063–1066

    Article  CAS  Google Scholar 

  • Ellis TK, Martin CH, Tsai GM, Ueki H, Soloshonok VA (2003b) Efficient synthesis of sterically constrained symmetrically α, α-disubstituted α-amino acids under operationally convenient conditions. J Org Chem 68:6208–6214

    Article  PubMed  CAS  Google Scholar 

  • Ellis TK, Hochla VM, Soloshonok VA (2003c) Efficient synthesis of 2-aminoindane-2-carboxylic acid via dialkylation of nucleophilic glycine equivalent. J Org Chem 68:4973–4976

    Article  PubMed  CAS  Google Scholar 

  • Ellis TK, Ueki H, Yamada T, Ohfune Y, Soloshonok VA (2006) Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained α-amino acids. J Org Chem 71:8572–8578

    Article  PubMed  CAS  Google Scholar 

  • Ellis TK, Ueki H, Tiwari R, Soloshonok VA (2009) Michael addition reactions between various nucleophilic glycine equivalents and (S, E)-1-enoyl-5-oxo-N-phenylpyrrolidine-2-carboxamide, and optimal type of chiral Michael acceptor in the asymmetric synthesis of β-pheyl pyroglutamic acid and related compounds. Tetrahedron Asymmetry 20:2629–2634

    Article  CAS  Google Scholar 

  • Etayo P, Vidal-Ferrán A (2013) Rhodium-catalyzed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem Soc Rev 42:728–754

    Article  PubMed  CAS  Google Scholar 

  • Evans DA, Weber AE (1986) Asymmetric glycine enolate aldol reaction: synthesis of cyclosporin’s unusual amino acid, MeBmt. J Am Chem Soc 108:6757–6761

    Article  CAS  Google Scholar 

  • Fishwick CWG, Sanderson JM, Findlay JBC (1994) An efficient route to S-N-(9-fluorenymethoxycarbony)-4′-(l-azi-2,2,2-trifluoroethyl)phenylalanine. Tetrahedron Lett 35:4611–4614

    Article  CAS  Google Scholar 

  • Fitzi R, Seebach D (1988) Resolution and use in α-amino acid synthesis of imidazolidinone glycine derivatives. Tetrahedron 44:5277–5292

    Article  CAS  Google Scholar 

  • Gu X, Tang X, Cowell S, Ying J, Hruby VJ (2002) A novel strategy toward [6,5]-bicyclic β-turn dipeptide. Tetrahedron Lett 43:6669–6672

    Article  CAS  Google Scholar 

  • Gu X, Cowell S, Ying J, Tang X, Hruby VJ (2003) Synthesis of β-phenyl-ω, ε-unsaturated amino acids and stereoselective introduction of side chain groups into [4,3,0]-bicyclic β-turn dipeptides. Tetrahedron Lett 44:5863–5866

    Article  CAS  Google Scholar 

  • Gu X, Ndungu JM, Qiu W, Ying J, Carducci MD, Wooden H, Hruby VJ (2004) Large scale enantiomeric synthesis, purification, and characterization of ω-unsaturated amino acids via a Gly-Ni(II)-BPB-complex. Tetrahedron 60:8233–8243

    Article  CAS  Google Scholar 

  • Hashimoto T, Maruoka K (2007) Recent development and application of chiral phase-transfer catalysts. Chem Rev 107:5656–5682

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hatanaka Y, Sadakane Y, Nabeta K (2002) Synthesis of tag introducible (3-trifluoromethyl)phenyldiazirine based photoreactive phenylalanine. Bioorg Med Chem Lett 12:2507–2510

    Article  PubMed  CAS  Google Scholar 

  • Houck D, Aceña JL, Soloshonok VA (2012) Alkylations of chiral Ni(II)-complexes of glycine under phase-transfer conditions. Helv Chim Acta 95:2672–2679

    Article  CAS  Google Scholar 

  • Hung K-y, Harris PWR, Brimble MA (2010) Synthesis of methyl N-Boc-(2S,4R)-4-methylpipecolate. J Org Chem 75:8728–8731

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Chibata I, Itoh T (1978) Production and utilization of amino acids. Angew Chem Int Ed Engl 17:176–183

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto SA, Coleska A, Ran X, Yi H, Yang C-Y, Wang S (2012) Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B cell CLL/lymphoma 9 (BCL9) protein–protein interaction. J Med Chem 55:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Sieburth SM (2012) Synthesis and properties of a sterically unencumbered δ-silanediol amino acid. J Org Chem 77:2901–2906

    Article  PubMed  CAS  Google Scholar 

  • Kožíšek J, Fronc M, Skubák P, Popkov A, Breza M, Fuess H, Paulmann C (2004) Electronic structure of the nickel(II) complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylprolinamide and glycine. Acta Cryst A60:510–516

    Google Scholar 

  • Kukhar VP, Belokon YN, Svistunova NY, Soloshonok VA, Rozhenko AB, Kuzmina NA (1993) Asymmetric synthesis of organoelement analogues of natural products; part 12: general method for the asymmetric synthesis of fluorine-containing phenylalanines and α-methyl(phenyl)alanines via alkylation of chiral nickel(II) Schiff’s base complexes of glycine and alanine. Synthesis 117–121

  • Kukhar VP, Soloshonok VA, Solodenko VA (1994) Asymmetric synthesis of phosphorus analogs of amino acids. Phosphorus Sulfur Silicon Relat Elem 92:239–264

    Article  CAS  Google Scholar 

  • Larionov OV, Savel’eva TF, Kochetkov KA, Ikonnokov NS, Kozhushkov SI, Yufit DS, Howard JAK, Khrustalev VN, Belokon YN, de Meijere A (2003) Productive asymmetric synthesis of all four diastereomers of 3-(trans-2-nitrocyclopropyl)alanine from glycine with (S)- or (R)-2-[(N-benzylprolyl)amino]benzophenone as a reusable chiral auxiliary. Eur J Org Chem 2003(5):869–877

  • Le Chevalier Isaad A, Barbetti F, Rovero P, D’Ursi AM, Chelli M, Chorev M, Papini AM (2008) N α-Fmoc-protected ω-azido- and ω-alkynyl-l-amino acids as building blocks for the synthesis of “clickable” peptides. Eur J Org Chem 2008(31):5308–5314

  • Lygo B, Andrews BI (2004) Asymmetric phase-transfer catalysis utilizing chiral quaternary ammonium salts: asymmetric alkylation of glycine imines. Acc Chem Res 37:518–525

    Article  PubMed  CAS  Google Scholar 

  • Lygo B, Wainwright PG (1997) A new class of asymmetric phase-transfer catalysts derived from chincona alkaloids—application in the enantioselective synthesis of α-amino acids. Tetrahedron Lett 38:8595–8598

    Article  CAS  Google Scholar 

  • Lygo B, Crosby J, Lowdon TR, Peterson JA, Wainwright PG (2001) Studies on the enantioselective synthesis of α-amino acids via asymmetric phase-transfer catalysis. Tetrahedron 57:2403–2409

    Article  CAS  Google Scholar 

  • Lygo B, Andrews BI, Crosby J, Peterson JA (2002) Asymmetric alkylation of glycine imines using in situ generated phase-transfer catalysts. Tetrahedron Lett 43:8015–8018

    Article  CAS  Google Scholar 

  • Ma J-A (2003) Recent developments in the catalytic asymmetric synthesis of α- and β-amino acids. Angew Chem Int Ed 42:4290–4299

    Article  CAS  Google Scholar 

  • Maruoka K, Ooi T (2003) Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem Rev 103:3013–3028

    Article  PubMed  CAS  Google Scholar 

  • Moore JL, Taylor SM, Soloshonok VA (2005) An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Hunig’s base. ARKIVOC 2005(6):287–292

  • Myers AG, Gleason JL, Yoon T, Kung DW (1997) Highly practical methodology for the synthesis of d- and l-α-amino acids, N-protected α-amino acids, and N-methyl-α-amino acids. J Am Chem Soc 119:656–673

    Article  CAS  Google Scholar 

  • Nádvorník M, Popkov A (2002) Improved synthesis of the Ni(II) complex of the Schiff base of (S)-2-[N-(NA-benzylprolyl)amino]benzophenone and glycine. Green Chem 4:71–72

    Article  CAS  Google Scholar 

  • Nádvorník M, Langer V, Jirásko R, Holčapek M, Weidlich T, Lyčka A, Popkov A (2008) Syntheses, X-ray, MSn, NMR and CD structure determination of nickel(II) complexes of Schiff bases of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and aromatic α-amino acids. Polyhedron 27:3477–3483

    Article  CAS  Google Scholar 

  • Nájera C, Sansano JM (2007) Catalytic asymmetric synthesis of α-amino acids. Chem Rev 107:4584–4671

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell MJ (2001) The preparation of optically active α-amino acids from the benzophenone imines of glycine derivatives. Aldrichimica Acta 34:3–15

    Google Scholar 

  • O’Donnell MJ (2004) The enantioselective synthesis of α-amino acids by phase transfer catalysis with achiral Schiff base esters. Acc Chem Res 37:506–517

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell MJ, Bennet WD, Wu S (1989) The stereoselective synthesis of α-amino acids by phase transfer catalysis. J Am Chem Soc 111:2353–2355

    Article  Google Scholar 

  • O’Donnell MJ, Eckrich TM (1978) The synthesis of amino acid derivatives by catalytic phase-transfer alkylations. Tetrahedron Lett 19:4625–4628

    Article  Google Scholar 

  • O’Donnell MJ, Bennett WD, Bruder WA, Jacobsen WN, Knuth K, LeClef B, Polt RL, Bordwell FG, Mrozack SR, Cripe TA (1988) Acidities of glycine Schiff bases and alkylation of their conjugate bases. J Am Chem Soc 110:8520–8525

    Article  Google Scholar 

  • Ooi T, Maruoka K (2007) Recent advances in asymmetric phase-transfer catalysis. Angew Chem Int Ed 46:4222–4266

    Article  CAS  Google Scholar 

  • Ooi T, Kameda M, Maruoka K (1999) Molecular design of a C2-symmetric chiral phase-transfer catalyst for practical asymmetric synthesis of α-amino acids. J Am Chem Soc 121:6519–6520

    Article  CAS  Google Scholar 

  • Ooi T, Kameda M, Maruoka K (2003) Design of N-spiro C2-symmetric chiral quaternary ammonium bromides as novel chiral phase-transfer catalysts: synthesis and application to practical asymmetric synthesis of α-amino acids. J Am Chem Soc 125:5139–5151

    Article  PubMed  CAS  Google Scholar 

  • Park H-g, Jeong B-S, Yoo M-S, Lee J-H, M-k Park, Lee Y-J, Kim M-J, Jew S-s (2002) Highly enantioselective and practical chincona-derived phase-transfer catalysts for the synthesis of α-amino acids. Angew Chem Int Ed 41:3036–3038

    Article  CAS  Google Scholar 

  • Popkov A, De Spiegeleer BD (2012) Chiral nickel(II) complexes in the preparation of 11C- and 18F-labelled enantiomerically pure α-amino acids. Dalton Trans 41:1430–1440

    Article  PubMed  CAS  Google Scholar 

  • Popkov A, Gree A, Nádvorník M, Lyčka A (2002) Chiral nucleophilic glycine and alanine synthons: nickel(II) complexes of Schiff bases of (S)-N-(2,4,6-trimethylbenzyl)proline (2-benzoylphenyl)amide and glycine or alanine. Trans Met Chem 27:884–887

    Article  CAS  Google Scholar 

  • Popkov A, Langer V, Manorik PA, Weidlich T (2003) Long-range spin–spin interactions in the 13C-n.m.r. spectra of the nickel(II) complex of the Schiff base of (S)-N-benzylproline (2-benzoylphenyl)amide and glycine. Quantum-chemical calculations and possible donation of electron density from the π-system of the benzyl group to nickel. Trans Met Chem 28:475–481

    Article  CAS  Google Scholar 

  • Qiu W, Soloshonok VA, Cai C, Tang X, Hruby VJ (2000) Convenient, large-scale asymmetric synthesis of enantiomerically pure trans-cinnamylglycine and -α-alanine. Tetrahedron 56:2577–2582

    Article  CAS  Google Scholar 

  • Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ (2001) Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics. Tetrahedron Lett 42:145–148

    Article  CAS  Google Scholar 

  • Saghiyan AS, Dadayan SA, Petrosyan SG, Manasyan LL, Geolchanyan AV, Djamgaryan SM, Andreasyan SA, Maleev VI, Khrustalev VN (2006) New chiral NiII complexes of Schiff’s bases of glycine and alanine for efficient asymmetric synthesis of α-amino acids. Tetrahedron Asymmetry 17:455–467

    Article  CAS  Google Scholar 

  • Saghiyan AS, Dadayan AS, Dadayan SA, Mkrtchyan AF, Geolchanyan AV, Manasyan LL, Ajvazyan HR, Khrustalev VN, Hambardzumyan HH, Maleev VI (2010) Rapid asymmetric synthesis of amino acids via NiII complexes based on new fluorine containing chiral auxiliaries. Tetrahedron Asymmetry 21:2956–2965

    Article  CAS  Google Scholar 

  • Schöllkopf U (1983a) Enantioselective synthesis of non-proteinogenic amino acids via metalated bis-lactim ethers of 2,5-diketopiperazines. Tetrahedron 39:2085–2091

    Article  Google Scholar 

  • Schöllkopf U (1983b) Asymmetric syntheses of amino acids via metalated bis-lactim ethers of 2,5-diketopiperazines. Pure Appl Chem 55:1799–1806

    Article  Google Scholar 

  • Schöllkopf U, Groth U, Deng C (1981) Enantioselective syntheses of (R)-amino acids using l-valine as chiral agent. Angew Chem Int Ed Engl 20:798–799

    Article  Google Scholar 

  • Sebahar PR, Williams RM (2000) The asymmetric total synthesis of (+)- and (−)-spirotryprostatin B. J Am Chem Soc 122:5666–5667

    Article  CAS  Google Scholar 

  • Seebach D, Sting AR, Hoffmann M (1996) Self-regeneration of stereocenters (SRS)—applications, limitations, and abandonment of a synthetic principle. Angew Chem Int Ed Engl 35:2708–2748

    Article  CAS  Google Scholar 

  • Shibuguchi T, Fukuta Y, Akachi Y, Sekine A, Ohshima T, Shibasaki M (2002) Development of new asymmetric two-center catalysts in phase-transfer reactions. Tetrahedron Lett 43:9539–9543

    Article  CAS  Google Scholar 

  • Shirakawa S, Maruoka K (2013) Recent developments in asymmetric phase-transfer reactions. Angew Chem Int Ed 52:4312–4348

    Article  CAS  Google Scholar 

  • Sinclair PJ, Zhai D, Reibenspies J, Williams RM (1986) Electrophilic glycinates: new and versatile templates for asymmetric amino acid synthesis. J Am Chem Soc 108:1103–1104

    Article  CAS  Google Scholar 

  • Soloshonok VA (2002) Highly diastereoselective Michael addition reactions between nucleophilic glycine equivalents and β-substituted-α, β-unsaturated carboxylic acid derivatives; a general approach to the stereochemically defined and sterically χ constrained α-amino acids. Curr Org Chem 6:341–364

    Article  CAS  Google Scholar 

  • Soloshonok VA, Berbasov DO (2004) Synthesis of fluorine-containing compounds under operationally convenient conditions. J Fluorine Chem 125:1757–1763

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ono T (2009) Operationally convenient asymmetric synthesis of (S)-2-amino-3,3-bis-(4-fluorophenyl)propanoic acid. J Fluorine Chem 130:547–549

    Article  CAS  Google Scholar 

  • Soloshonok VA, Sorochinsky AE (2010) Practical methods for the synthesis of symmetrically α,α-disubstituted α-amino acids. Synthesis 2319–2344

  • Soloshonok VA, Ueki H (2007) Design, synthesis, and characterization of binuclear Ni(II) complexes with inherent helical chirality. J Am Chem Soc 129:2426–2427

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Belokon YN, Kukhar VP, Chernoglazova NI, Saporovskaya MB, Bakhmutov VI, Kolycheva MT, Belikov VM (1990) Asymmetric synthesis of organoelement analogs of natural products. 2. Convenient synthetic approach to enantiomerically pure (S)-(−)-o, m, p-fluorophenylalanines and their 2-methyl derivatives. Izv Akad Nauk SSSR Ser Khim 1630–1636

  • Soloshonok VA, Svistunova NY, Kukhar VP, Solodenko VA, Kuzmina NA, Rozhenko AB, Galushko SV, Shishkina IP, Gudima AO, Belokon YN (1992a) Asymmetric synthesis of organoelement analogs of natural products. 6. (S)-α-Amino-ω-phosphonocarboxylic acids. Izv Akad Nauk SSSR Ser Khim 397–402

  • Soloshonok VA, Belokon YN, Kuzmina NA, Maleev VI, Svistunova NY, Solodenko VA, Kukhar VP (1992b) Asymmetric synthesis of phosphorus analogues of dicarboxylic α-amino acids. J Chem Soc Perkin Trans 1, pp 1525–1529

  • Soloshonok VA, Kukhar VP, Galushko SV, Svistunova NY, Avilov DV, Kuzmina NA, Raevski NI, Struchkov YT, Pisarevsky AP, Belokon YN (1993) General method for the synthesis of enantiomerically pure β-hydroxy-α-amino acids, containing fluorine atoms in the side chains. Case of stereochemical distinction between methyl and trifluoromethyl groups. X-ray crystal and molecular structure of the nickel(II) complex of (2S,3S)-2-(trifluoromethyl)threonine. J Chem Soc Perkin Trans 1, pp 3143–3155

  • Soloshonok VA, Kirilenko NA, Fokina NA, Shishkina IP, Galushko SV, Kukhar VP, Svedas VK, Kozlova EV (1994a) Biocatalytic resolution of β-fluoroalkyl-β-amino acids. Tetrahedron Asymmetry 5:1119–1126

    Article  CAS  Google Scholar 

  • Soloshonok VA, Kirilenko AG, Galushko SV, Kukhar VP (1994b) Catalytic asymmetric synthesis of β-fluoroalkyl β-amino acids via biomimetic [1,3]-proton shift reaction. Tetrahedron Lett 35:5063–5064

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP, Tararov VI, Saveleva TF, Churkina TD, Ikonnikov NS, Kochetkov KA, Orlova SA, Pysarevsky AP, Struchkov YT, Raevsky NI, Belokon YN (1995) Asymmetric aldol reactions of chiral Ni(II)-complex of glycine with aldehydes. Stereodivergent synthesis of syn-(2S)- and syn-(2R)-β-alkylserines. Tetrahedron Asymmetry 6:1741–1756

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar’ VP (1996a) Highly diastereoselective asymmetric aldol reactions of chiral Ni(II)-complex of glycine with trifluoromethyl ketones. Tetrahedron Asymmetry 7:1547–1550

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP (1996b) Asymmetric aldol reactions of trifluoromethyl ketones with a chiral Ni(II) complex of glycine: stereocontrolling effect of the trifluoromethyl group. Tetrahedron 52:12433–12442

    Article  CAS  Google Scholar 

  • Soloshonok VA, Avilov DV, Kukhar VP, Van Meervelt L, Mischenko N (1997) Highly diastereoselective aza-aldol reactions of a chiral Ni(II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids. Tetrahedron Lett 38:4671–4674

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ (1999) Asymmetric Michael addition reactions of chiral Ni(II)-complex of glycine with (N-trans-enoyl)oxazolidines: improved reactivity and stereochemical outcome. Tetrahedron Asymmetry 10:4265–4269

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L, Yamazaki T (2000a) Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. J Org Chem 65:6688–6696

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ (2000b) A unique case of face diastereoselectivity in the Michael addition reactions between Ni(II)-complexes of glycine and chiral 3-(E-enoyl)-1,3-oxazolidin-2-ones. Tetrahedron Lett 41:9645–9649

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ (2000c) Toward design of a practical methodology for stereocontrolled synthesis of χ-constrained pyroglutamic acids and related compounds. Virtually complete control of simple diastereoselectivity in the Michael addition reactions of glycine Ni(II) complexes with N-(enoyl)oxazolidinones. Tetrahedron Lett 41:135–139

    Article  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Hruby VJ (2000d) (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org Lett 2:747–750

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Tang X, Hruby VJ (2001a) Large-scale asymmetric synthesis of novel sterically constrained 2′,6′-dimethyl- and α,2′,6′-trimethyltyrosine and -phenylalanine derivatives via alkylation of chiral equivalents of nucleophilic glycine and alanine. Tetrahedron 57:6375–6382

    Article  CAS  Google Scholar 

  • Soloshonok VA, Tang X, Hruby VJ, Van Meervelt L (2001b) Asymmetric synthesis of α, β-dialkyl-α-phenylalanines via direct alkylation of a chiral alanine derivative with racemic α-alkylbenzyl bromides. A case of high enantiomer differentiation at room temperature. Org Lett 3:341–343

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Tiwari R, Cai C, Hruby VJ (2004) Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of β-substituted pyroglutamic acids and prolines. J Org Chem 69:4984–4990

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Cai C, Yamada T, Ueki H, Ohfune Y, Hruby VJ (2005a) Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of β-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity. J Am Chem Soc 127:15296–15303

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK (2005b) New generation of nucleophilic glycine equivalents. Tetrahedron Lett 46:941–944

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK, Yamada T, Ohfune Y (2005c) Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of β-substituted pyroglutamic acids. Tetrahedron Lett 46:1107–1110

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ohkura H, Yasumoto M (2006a) Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid. Part I: enantioselective biomimetic transamination of isopropyl 4,4,4-trifluoro-3-oxobutanoate. J Fluorine Chem 127:924–929

    Article  CAS  Google Scholar 

  • Soloshonok VA, Ohkura H, Yasumoto M (2006b) Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid. Part II: enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl)butanamide. J Fluorine Chem 127:930–935

    Article  CAS  Google Scholar 

  • Soloshonok VA, Yamada T, Ueki H, Moore AM, Cook TK, Arbogast KL, Soloshonok AV, Martin CH, Ohfune Y (2006c) Operationally convenient, efficient asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylene dimerization of chiral glycine equivalents with dichloromethane. Tetrahedron 62:6412–6419

    Article  CAS  Google Scholar 

  • Soloshonok VA, Boettiger TU, Bolene SB (2008a) Asymmetric synthesis of (2S,3S)- and (2R,3R)-α,β-dialkyl-α-amino acids via alkylation of chiral nickel(II) complexes of aliphatic α-amino acids with racemic α-alkylbenzyl bromides. Synthesis 2008(16):2594–2602

  • Soloshonok VA, Ueki H, Ellis TK (2008b) Modular approach to the design of nucleophilic glycine equivalents with tailorable physico-chemical properties. Chimica Oggi/Chem Today 26:51–54

    CAS  Google Scholar 

  • Soloshonok VA, Yamada T, Sakaguchi K, Ohfune Y (2009a) Concise asymmetric synthesis of configurationally stable 4-trifluoromethyl thalidomide. Future Med Chem 1:897–908

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Ueki H, Ellis TK (2009b) New generation of modular nucleophilic glycine equivalents for the general synthesis of α-amino acids. Synlett 2009(5):704–715

  • Soloshonok VA, Ellis TK, Ueki H, Ono T (2009c) Resolution/deracemization of chiral α-amino acids using resolving reagents with flexible stereogenic centers. J Am Chem Soc 131:7208–7209

    Article  PubMed  CAS  Google Scholar 

  • Soloshonok VA, Ono T, Ueki H, Vanthuyne N, Balaban TS, Bürck J, Fliegl H, Klopper W, Naubron J-V, Bui TTT, Drake AF, Roussel C (2010) Ridge-tile-like chiral topology: synthesis, resolution, and complete chiroptical characterization of enantiomers of edge-sharing binuclear square planar complexes of Ni(II) bearing achiral ligands. J Am Chem Soc 132:10477–10483

    Article  PubMed  CAS  Google Scholar 

  • Sorochinsky AE, Hisanori U, Aceña JL, Ellis TK, Moriwaki H, Sato T, Soloshonok VA (2013) Chemical deracemization and (S) to (R) interconversion of some fluorine-containing α-amino acids. J Fluor Chem. doi:10.1016/j.jfluchem.2013.02.022

    Google Scholar 

  • Stork G, Leong AYW, Touzin AM (1976) Alkylation and Michael additions of glycine ethyl ester. Use in α-amino acid synthesis and as acyl carbanion equivalent. J Org Chem 41:3491–3493

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Soloshonok VA, Hruby VJ (2000) Convenient, asymmetric synthesis of enantiomerically pure 2′,6′-dimethyltyrosine (DMT) via alkylation of chiral equivalent of nucleophilic glycine. Tetrahedron Asymmetry 11:2917–2925

    Article  CAS  Google Scholar 

  • Tararov VI, Saveleva TF, Kuznetsov NY, Ikonnikov NS, Orlova SA, Belokon YN, North M (1997) Synthesis of both enantiomers of β, β-diphenyl-α-alanine (Dip) from glycine using (S)- or (R)-2-[(N-benzylpropyl)amino]benzophenone as reusable chiral auxiliary. Tetrahedron Asymmetry 8:79–83

    Article  CAS  Google Scholar 

  • Taylor SM, Yamada T, Ueki H, Soloshonok VA (2004) Asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylenedimerization of chiral glycine equivalents with dichloromethane under operationally convenient conditions. Tetrahedron Lett 45:9159–9162

    Article  CAS  Google Scholar 

  • Ueki H, Ellis TK, Martin CH, Boettiger TU, Bolene SB, Soloshonok VA (2003a) Improved synthesis of proline-derived Ni(II) complexes of glycine: versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of α-amino acids. J Org Chem 68:7104–7107

    Article  PubMed  CAS  Google Scholar 

  • Ueki H, Ellis TK, Martin CH, Soloshonok VA (2003b) Efficient large-scale synthesis of picolinic acid-derived nickel(II) complexes of glycine. Eur J Org Chem 2003(10):1954–1957

  • Undheim K (2008) The Schöllkopf chiron and transition metal mediated reactions, a powerful combination for stereoselective construction of cyclic α-quaternary-α-amino acid derivatives. Amino Acids 34:357–402

    Article  PubMed  CAS  Google Scholar 

  • Vadon-Legoff S, Dijols S, Mansuy D, Boucher J-L (2005) Improved and high yield synthesis of the potent arginase inhibitor: 2(S)-amino-6-boronohexanoic acid. Org Process Res Dev 9:677–679

    Article  CAS  Google Scholar 

  • Wang J, Liu X, Feng X (2011a) Asymmetric Strecker reactions. Chem Rev 111:6947–6983

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Lin D, Zhou S, Ding X, Soloshonok VA, Liu H (2011b) Asymmetric synthesis of sterically and electronically demanding linear ω-trifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine. J Org Chem 76:684–687

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu H, Aceña JL, Houck D, Takeda R, Moriwaki H, Sato T, Soloshonok VA (2013) Synthesis of bis-α, α′-amino acids through diastereoselective bis-alkylations of chiral Ni(II)-complexes of glycine. Org Biomol Chem 11:4508–4515

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Im M-N (1991) Asymmetric synthesis of monosubstituted and α, α-disubstituted α-amino acids via diastereoselective glycine enolate alkylations. J Am Chem Soc 113:9276–9286

    Article  CAS  Google Scholar 

  • Williams RM, Sinclair PJ, Zhai W (1988) Asymmetric synthesis of β-carboxyaspartic acid. J Am Chem Soc 110:482–483

    Article  CAS  Google Scholar 

  • Yamada T, Okada T, Sakaguchi K, Ohfune Y, Ueki H, Soloshonok VA (2006) Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogues of thalidomide. Org Lett 8:5625–5628

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Sakaguchi K, Shinada T, Ohfune Y, Soloshonok VA (2008) Efficient asymmetric synthesis of the functionalized pyroglutamate core unit common to oxazolomycin and neooxazolomycin using Michael reaction of nucleophilic glycine Schiff base with α, β-disubstituted acrylate. Tetrahedron Asymmetry 19:2789–2795

    Article  CAS  Google Scholar 

  • Yasumoto M, Ueki H, Soloshonok VA (2007) Base-free, thermal 1,3-proton shift reaction and its application for operationally convenient and improved synthesis of α-(trifluoromethyl)benzylamine. J Fluorine Chem 128:736–739

    Article  CAS  Google Scholar 

  • Zlatopolskiy BD, Loscha K, Alvermann P, Kozhushkov SI, Nikolaev SV, Zeeck A, de Meijere A (2004) Final elucidation of the absolute configuration of the signal metabolite hormaomycin. Chem Eur J 10:4708–4717

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank IKERBASQUE, Basque Foundation for Science; Basque Government (SAIOTEK S-PE12UN044) and Hamari Chemicals (Osaka, Japan) for generous financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Soloshonok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorochinsky, A.E., Aceña, J.L., Moriwaki, H. et al. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. Amino Acids 45, 691–718 (2013). https://doi.org/10.1007/s00726-013-1539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1539-4

Keywords

Navigation