Skip to main content
Log in

Enhanced β-turn conformational stability of tripeptides containing ΔPhe in cis over trans configuration

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Conformations of three pairs of dehydropeptides with the opposite configuration of the ΔPhe residue, Boc-Gly-ΔZ/EPhe-Phe-p-NA (Z- p -NA and E- p -NA), Boc-Gly-ΔZ/EPhe-Phe-OMe (Z-OMe and E-OMe), and Boc-Gly-ΔZ/EPhe-Phe-OH (Z-OH and E-OH) were compared on the basis of CD and NMR studies in MeOH, TFE, and DMSO. The CD results were used as the additional input data for the NMR-based calculations of the detailed solution conformations of the peptides. It was found that Z- p -NA, E- p -NA, Z-OMe, and Z-OH adopt the β-turn conformations and E-OMe and E-OH are unordered. There are two overlapping type III β-turns in Z- p -NA, type II’ β-turn in E- p -NA, and type II β-turn in Z-OMe and Z-OH. The results obtained indicate that in the case of methyl esters and peptides with a free carboxyl group, ΔZPhe is a much stronger inducer of ordered conformations than ΔEPhe. It was also found that temperature coefficients of the amide protons are not reliable indicators of intramolecular hydrogen bonds donors in small peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin JE, Claridge TDW, Hulme C, Rodger A, Schofield CJ (1994) Comments on the use of a dichromophoric circular dichroism assay for the identification of β-turns in peptides. Int J Peptide Protein Res 43:180–183

    Article  CAS  Google Scholar 

  • Cammers-Goodwin A, Allen TJ, Oslick SL, McClure KF, Lee JH, Kemp DS (1996) Mechanism of stabilization of helical conformations of polypeptides by water containing trifluoroethanol. J Am Chem Soc 118:3082–3090

    Article  CAS  Google Scholar 

  • Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21:249–261

    Article  PubMed  CAS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multi-dimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Google Scholar 

  • Goddard TD, Kneller DG (2003) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Gupta M, Chauhan V (2011) De novo design of α, β-didehydrophenylalanine containing peptides: from models to applications. Biopolymers 95:161–173 and references therein

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Acharya R, Mishra A, Ramakumar S, Ahmed F, Chauhan VS (2008) Dehydrophenylalanine (ΔPhe) as a β breaker: extended structure terminated by a ΔPhe-induced turn in the pentapeptide Boc-Phe1-Ala2-Ile3-ΔPhe4-Ala5-OMe. Chem Bio Chem 9:1375–1378

    Article  PubMed  CAS  Google Scholar 

  • Halab L, Gosselin F, Lubell WD (2000) Design, synthesis, and conformational analysis of azacycloalkane amino acids as conformationally constrained probes for mimicry of peptide secondary structures. Biopolymers (Pept Sci) 55:101–122

    Article  CAS  Google Scholar 

  • Jaremko Ł, Jaremko M, Pasikowski P, Cebrat M, Stefanowicz P, Lisowski M, Artym J, Zimecki M, Zhukov I, Szewczuk Z (2009) The immunosuppressive activity and solution structures of ubiquitin fragments. Biopolymers 91:423–431

    Article  PubMed  CAS  Google Scholar 

  • Jewginski M, Latajka R, Krężel A, Haremza K, Makowski M, Kafarski P (2013) Influence of solvents on conformation of dehydropeptides. J Mol Struct 1035:129–139

    Article  CAS  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MolMol: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  CAS  Google Scholar 

  • Latajka R, Makowski M, Jewgiński M, Pawełczak M, Koroniak H, Kafarski P (2006) Peptide p-nitrophenylanilides containing (E)-dehydrophenylalanine–synthesis, structural studies and evaluation of their activity towards cathepsin C. New J Chem 30:1009–1018

    Article  CAS  Google Scholar 

  • Latajka R, Jewgiński M, Makowski M, Krężel A (2008a) Conformational studies of hexapeptides containing two dehydroamino acid residues in positions 3 and 5 in peptide chain. J Mol Struct 92:446–451

    Article  Google Scholar 

  • Latajka R, Jewgiński M, Makowski M, Krężel A, Paluch S (2008b) Conformational studies of hexapeptides containing two dehydroamino acid residues in positions 2 and 5 in peptide chain. Biopolymers 89:691–699

    Article  PubMed  CAS  Google Scholar 

  • Lewis PN, Momany FA, Scheraga HA (1973) Chain reversals in proteins. Biochim Biophys Acta 303:211–229

    Article  PubMed  CAS  Google Scholar 

  • Lisowski M, Latajka R, Picur B, Lis T, Bryndal I, Rospenk M, Makowski M, Kafarski P (2008) Combined effect of the ΔPhe or ΔAla residue and the p-nitroanilide group on a didehydropeptides conformation. Biopolymers 89:220–234

    Article  PubMed  CAS  Google Scholar 

  • Lisowski M, Jaremko Ł, Jaremko M, Mazur A, Latajka R, Makowski M (2010) Effect of the ΔPhe residue configuration on a didehydropeptides conformation: a combined CD and NMR study. Biopolymers 93:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Luo P, Baldwin RL (1997) Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 36:8413–8421

    Article  PubMed  CAS  Google Scholar 

  • Makowski M, Rzeszotarska B, Kubica Z, Pietrzyński G, Hetper J (1986) Coupling experiments with C-terminal dehydrophenylalanine and dehydroalanine residues. Liebigs Ann Chem 1986:980–991

    Article  Google Scholar 

  • Makowski M, Pawełczak M, Latajka R, Nowak K, Kafarski P (2001) Synthesis of tetrapeptide p-nitrophenylanilides containing dehydroalanine and dehydrophenylalanine and their influence on cathepsin C activity. J Peptide Sci 7:141–145

    Article  CAS  Google Scholar 

  • Makowski M, Brzuszkiewicz A, Lisowski M, Lis T (2005) N-[tert-Butoxycarbonylglycyl-(Z)-α,β-dehydrophenylalanylglycyl-(E)-α,β-dehydrophenylalanylphenylalanyl]-4-nitroaniline ethanol solvate. Acta Cystallogr Sect C 61:o424–o426

    Article  Google Scholar 

  • Makowski M, Lisowski M, Mikołajczyk I, Lis T (2007) N-[tert-Butoxycarbonylglycyl-(E)-α,β-dehydrophenylalanylglycylglycyl-(E)-α,β-dehydrophenylalanyl]glycine. Acta Crystallogr Sect E 63:o19–o21

    Article  CAS  Google Scholar 

  • Makowski M, Lisowski M, Maciąg A, Wiktor M, Szlachcic A, Lis T (2010) Two pentadehydropeptides with different configurations of the ΔPhe residues. Acta Crystallogr Sect C 66:o119–o123

    Article  CAS  Google Scholar 

  • Mathur P, Ramakumar S, Chauhan VS (2004) Peptide design using α, β-dehydro amino acids: from β-turns to helical hairpins. Biopolymers 76:150–161 and references therein

    Article  PubMed  CAS  Google Scholar 

  • Pieroni O, Fissi A, Pratesi C, Temussi PA, Ciardelli F (1993) Solution structure of peptides containing two dehydrophenylalanine residues: a CD investigation. Biopolymers 33:1–10

    Article  PubMed  CAS  Google Scholar 

  • Pieroni O, Fissi A, Jain RM, Chauhan VS (1996) Solution structure of dehydropeptides: a CD investigation. Biopolymers 38:97–108

    Article  PubMed  CAS  Google Scholar 

  • Rajan R, Balaram P (1996) A model for the interaction of trifluoroethanol with peptides and proteins. Int J Peptide Protein Res 48:328–336

    Article  CAS  Google Scholar 

  • Ramagopal UA, Ramakumar S, Sahal D, Chauhan VS (2001) De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: compaction mediated by weak interactions. Proc Natl Acad Sci USA 98:870–874

    Article  PubMed  CAS  Google Scholar 

  • Ramagopal UA, Ramakumar S, Mathur P, Joshi RM, Chauhan VS (2002) Dehydrophenylalanine zippers: strong helix–helix clamping through a network of weak interactions. Protein Eng 15:331–335

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Kawai M, Nagai U (1981) β-Turn preference of tetrapeptide sequences as analyzed by CD spectra of their dnp-pNA derivatives. Biopolymers 20:1921–1927

    Article  CAS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Google Scholar 

  • Stammer CH (1982) Dehydroamino acids and peptides. Chem Biochem Amino Acids Peptides Proteins 6:33–74

    CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. John Wiley and Sons, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank prof. Andrzej Ejchart (Institute of Biochemistry and Biophysics, Polish Academy of Sciences) for making the 500 MHz Varian spectrometer available to us. The syntheses of peptides, performed by M. Makowski, were supported by the Wrocław Research Center EIT + under the project “Biotechnologies and advanced medical technologies––BioMed” (POIG 01.01.02-02-003/08-00 financed from the European Regional Development Fund (Operational Programme Innovative Economy, 1.1.2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariusz Jaremko or Łukasz Jaremko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaremko, M., Jaremko, Ł., Mazur, A. et al. Enhanced β-turn conformational stability of tripeptides containing ΔPhe in cis over trans configuration. Amino Acids 45, 865–875 (2013). https://doi.org/10.1007/s00726-013-1534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1534-9

Keywords

Navigation