Skip to main content

Advertisement

Log in

A new method to synthesize creatine derivatives

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Creatine is an amino acid that has a pivotal role in energy metabolism of cells. Creatine acts as an “ATP shuttle”, carrying ATP to the sites where it is utilized, through its reversible phosphorylation by creatine kinase. Moreover, the creatine-phosphocreatine system delays ATP depletion during anoxia or ischemia, thus exerting a neuroprotective role during those pathological conditions. Thus, its administration has been advocated as a treatment or prevention of several conditions involving the central nervous system. However, creatine crosses poorly the blood–brain barrier and the cell plasma membrane, thus its administration has but a limited effect. The use of more lipophilic creatine derivatives has thus been suggested. However, such a synthesis is complicated by the intrinsic characteristics of the creatine molecule that hardly reacts with other molecules and easily cyclizes to creatinine. We obtained amide derivatives from creatine starting from a new protected creatine molecule synthesized by us, the so-called (Boc)2-creatine. We used a temporary protection only on the creatine guanidine group while allowing a good reactivity on the carboxylic group. This temporary protection ensured efficient creatine dissolution in organic solvents and offered simultaneous protection of creatine toward intramolecular cyclization to creatinine. In this manner, it was possible to selectively conjugate molecules on the carboxylic group. The creatine guanidine group was easily released from the protection at the end of the reaction, thus obtaining the desired creatine derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Bibliography

  • Adhihetty P, Beal M (2008) Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med 10(4):275–290. doi:10.1007/s12017-008-8053-y

    Article  PubMed  CAS  Google Scholar 

  • Adriano E, Garbati P, Damonte G, Salis A, Armirotti A, Balestrino M (2011) Searching for a therapy of creatine transporter deficiency: some effects of creatine ethyl ester in brain slices in vitro. Neuroscience 199:386–393. doi:10.1016/j.neuroscience.2011.09.018

    Article  PubMed  CAS  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76:329–343. doi:10.1016/j.brainresbull.2008.02.035

    Article  PubMed  CAS  Google Scholar 

  • Balestrino M, Lensman M, Parodi M, Perasso L, Rebaudo R, Melani R, Polenov S, Cupello A (2002) Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23(1–3):221–229. doi:10.1007/s00726-001-0133-3

    Article  PubMed  CAS  Google Scholar 

  • Beal M (2011) Neuroprotective effects of creatine. Amino Acids 1–9. doi:10.1007/s00726-011-0851-0

  • Burov S, Leko M, Dorosh M, Dobrodumov A, Veselkina O (2011a) Creatinyl amino acids—new hybrid compounds with neuroprotective activity. J Pept Sci 17(9):620–626. doi:10.1002/psc.1379

    Article  PubMed  CAS  Google Scholar 

  • Burov S, Khromova NV, Khromova AA, Khromov PA (2011b) Patent US 2011/0269986 A1 Amides of creatine, method of their preparation, and remedy possessing a neuroprotective activity, Pub. Date Nov. 3, 2011

  • Carpino LA, Shroff H, Triolo SA, Mansour ESME, Wenschuh H, Albericio F (1993) The 2,2,4,6,7, pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) as arginine side chain protectant. Tetrahedron Lett 34(49):7829–7832. doi:10.1016/S0040-4039(00)61487-9

    Article  CAS  Google Scholar 

  • Chaudhary A, Girgis M, Prashad M, Hu B, Har D, Repič O, Blacklock TJ (2003) Using mixed anhydrides from amino acids and isobutyl chloroformate in N-acylations: a case study on the elucidation of mechanism of urethane formation and starting amino acid liberation using carbon dioxide as the probe. Tetrahedron Lett 44(29):5543–5546. doi:10.1016/S0040-4039(03)01329-7

    Article  CAS  Google Scholar 

  • Cheguillaume A, Salaün A, Sinbandhit S, Potel M, Gall P, Baudy-Floćh M, Le Grel P (2001) Solution synthesis and characterization of aza-beta(3)-peptides (N(alpha)-substituted hydrazino acetic acid oligomers). J Org Chem 66(14):4923–4929

    Article  PubMed  CAS  Google Scholar 

  • Chen BC, Skoumbourdis AP, Guo P, Bednarz MS, Kocy OR, Sundeen JE, Vite GD (1999) A facile method for the transformation of N-(tert-butoxycarbonyl)α-amino acids to N-unprotected α-amino acids methyl esters. J Org Chem 64:9294–9296. doi:10.1021/jo990311w

    Article  CAS  Google Scholar 

  • Dash AK, Sawhney A (2002) A simple LC method with UV detection for the analysis of creatine and creatinine and its application to several creatine formulations. J Pharm Biomed Anal 29(5):939–945. doi:10.1016/S0731-7085(02)00167-X

    Article  PubMed  CAS  Google Scholar 

  • Edgar G, Shiver HE (1925) The equilibrium between creatine and creatinine in aqueous solution. The effect of the hydrogen ion. J Am Chem Soc 47(4):1179–1188

    Article  CAS  Google Scholar 

  • Greenhaff PL (2001) The creatine-phosphocreatine system: there’s more than one song in its repertoire. J Physiol (Lond) 537(3):657. doi:10.1113/jphysiol.2001.013478

    Article  CAS  Google Scholar 

  • Heuer MA, Maceougall J, Molins M (2009) Patent US 2009/0297685A1 Preparations containing creatine and imino sugars, Pub. Date Dec. 3, 2009

  • Isidro-Llobet A, Alvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109:2455–2504. doi:10.1021/cr800323s

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sha Y (2008) A convenient synthesis of amino acid methyl esters. Molecules 13(5):1111–1119. doi:10.3390/molecules13051111

    Article  PubMed  CAS  Google Scholar 

  • Lunardi G, Parodi A, Perasso L, Pohvozcheva AV, Scarrone S, Adriano E, Florio T, Gandolfo C, Cupello A, Burov SV, Balestrino M (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142(4):991–997. doi:10.1016/j.neuroscience.2006.06.058

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah F, Feki M, Kaabachi N (2010) Creatine and Creatine Deficiency Syndromes: biochemical and clinical aspects. Pediatr Neurol 42(3):163–171. doi:10.1016/j.pediatrneurol.2009.07.015

    Article  PubMed  Google Scholar 

  • Negrisoli G, Del Corona L (1999) Hydrosoluble organic salts of creatine, Patent 5,973,199, Date of patent: Oct. 26, 1999

  • Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA, Nudelman A (1998) Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides; B) carboxylate ester formation; C) mild removal of N-t-Boc-protective group. Synth Commun 28(3):471–474. doi:10.1080/00397919808005101

    Article  CAS  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga T, Shimizu H, Watanabe TM, Hosoya K, Terasaki T (2002) The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42. doi:10.1016/S0006-8993(03)02547-2

    Article  PubMed  CAS  Google Scholar 

  • Perasso L, Lunardi G, Risso F, Pohvozcheva A, Leko M, Gandolfo C, Florio T, Cupello A, Burov S, Balestrino M (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33(5):765–775. doi:10.1007/s11064-007-9492-9

    Article  PubMed  CAS  Google Scholar 

  • Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M (2013) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev 33(2):336–363. doi:10.1002/med.20255

    Article  PubMed  CAS  Google Scholar 

  • Peters J, MacDougall J, Chaudhuri S (2007) Creatine-fatty acid, Patent CA 2 577 439 A1, Pub. Date 07.05.2007

  • Pischel I, Gastner T (2008) Creatine—its chemical synthesis, chemistry, and legal status. In: Salomons GS, Wyss M (eds) Creatine and creatine kinase in health and disease subcellular biochemistry. Springer, Berlin, pp 291–307

    Google Scholar 

  • Pischel I, Weiss S, Gloxhuber C, Mertschenk B (1999) Creatine ascorbates and method of producing them, Patent 5,863,939, Date of patent Jan. 26, 1999

  • Powell DA, Ramsden PD, Batey RA (2003) Phase-transfer-catalyzed alkylation of guanidines by alkyl halides under biphasic conditions: a convenient protocol for the synthesis of highly functionalized guanidines. J Org Chem 68(6):2300–2309. doi:10.1021/jo0265535

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Roskamp EJ (1997) Solid phase of guanidines. Tetrahedron 53(19):6697–6705. doi:10.1016/S0040-4020(97)00225-1

    Article  CAS  Google Scholar 

  • Ruskin LS (1946) Sulphanilamide derivatives and method of preparing same, Patent US 2,407,686. Sept. 17, 1946

  • Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244(1–2):143–150. doi:10.1023/A:1022443503883

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Dash AK (2009) Creatine Monohydrate. In: Brittain HG (ed) Profiles of drug substances, excipients, and related methodology, vol 34, 1st edn. Elsevier, Oxford, pp 18–19

    Google Scholar 

  • Smith-Palmer T (2002) Separation methods applicable to urinary creatine and creatinine. J Chromatogr B Analyt Technol Biomed Life Sci 781(1–2):93–106. doi:10.1016/S1570-0232(02)00617-7

    PubMed  CAS  Google Scholar 

  • Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224(1–2):169–181. doi:10.1023/A:1011908606819

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Narita K, Muramatsu T, Shimomura H, Ohnishi T, Mizutani M, Ueno K, Hirai N (2011) Synthesis and biological activity of amino acid conjugates of abscisic acid. Bioorg Med Chem 19:1743–1750. doi:10.1016/j.bmc.2011.01.019

    Article  PubMed  CAS  Google Scholar 

  • Windholz M, Budavari S, Stroumtsos Y, Fertig MN (1976) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 9th edn. Merck, NJ

    Google Scholar 

  • Zhu XF, Williams HJ, Scott AI (2000) Aqueous trifluoroacetic acid—an efficient reagent for exclusively cleaving the 5′-end of 3′,5′-TIPDS protected ribonucleosides. Tetrahedron Lett 41(49):9541–9545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marta Bellotti for her valuable help in verifying (Boc)2-creatine stability.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Millo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbati, P., Salis, A., Adriano, E. et al. A new method to synthesize creatine derivatives. Amino Acids 45, 821–833 (2013). https://doi.org/10.1007/s00726-013-1525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1525-x

Keywords

Navigation