Amino Acids

, Volume 45, Issue 1, pp 143–157 | Cite as

Panurgines, novel antimicrobial peptides from the venom of communal bee Panurgus calcaratus (Hymenoptera: Andrenidae)

  • Sabína Čujová
  • Jiřina Slaninová
  • Lenka Monincová
  • Vladimír Fučík
  • Lucie Bednárová
  • Jitka Štokrová
  • Oldřich Hovorka
  • Zdeněk Voburka
  • Jakub Straka
  • Václav Čeřovský
Original Article

Abstract

Three novel antimicrobial peptides (AMPs), named panurgines (PNGs), were isolated from the venom of the wild bee Panurgus calcaratus. The dodecapeptide of the sequence LNWGAILKHIIK-NH2 (PNG-1) belongs to the category of α-helical amphipathic AMPs. The other two cyclic peptides containing 25 amino acid residues and two intramolecular disulfide bridges of the pattern Cys8–Cys23 and Cys11–Cys19 have almost identical sequence established as LDVKKIICVACKIXPNPACKKICPK-OH (X=K, PNG-K and X=R, PNG-R). All three peptides exhibited antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, antifungal activity, and low hemolytic activity against human erythrocytes. We prepared a series of PNG-1 analogs to study the effects of cationicity, amphipathicity, and hydrophobicity on the biological activity. Several of them exhibited improved antimicrobial potency, particularly those with increased net positive charge. The linear analogs of PNG-K and PNG-R having all Cys residues substituted by α-amino butyric acid were inactive, thus indicating the importance of disulfide bridges for the antimicrobial activity. However, the linear PNG-K with all four cysteine residues unpaired, exhibited antimicrobial activity. PNG-1 and its analogs induced a significant leakage of fluorescent dye entrapped in bacterial membrane-mimicking large unilamellar vesicles as well as in vesicles mimicking eukaryotic cell membrane. On the other hand, PNG-K and PNG-R exhibited dye-leakage activity only from vesicles mimicking bacterial cell membrane.

Keywords

Antimicrobial peptides Wild bee venom CD spectroscopy Large unilamellar vesicles Electron microscopy 

Notes

Acknowledgments

This work was supported by the Grant Agency of the Charles University no. 645012, Czech Science Foundation, Grant no. 203/08/0536, and by research project RVO 61388963 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. We thank our technical assistants Mrs. Hana Hulačová and Mrs. Lenka Borovičková for their help with peptide synthesis. We also thank Gale A. Kirking at English Editorial Services, s.r.o. for assistance with the English.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2013_1482_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2901 kb)

References

  1. Amiche M, Galanth C (2011) Dermaseptins as models for the elucidation of membrane-acting helical amphipathic antimicrobial peptides. Curr Pharm Biotechnol 12:1184–1193CrossRefPubMedGoogle Scholar
  2. Argiolas A, Pisano JJ (1985) Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem 260:1437–1444PubMedGoogle Scholar
  3. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antimicrobial and toxic activity of melittin. J Biol Chem 279:55042–55050CrossRefPubMedGoogle Scholar
  4. Backlund B-M, Wikander G, Peeters T, Graslund A (1994) Induction of secondary structure in the peptide hormone motilin by interaction with phospholipid vesicles. Biochim Biophys Acta 1190:337–344CrossRefPubMedGoogle Scholar
  5. Baltzer SA, Brown MH (2011) Antimicrobial peptides—promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235CrossRefPubMedGoogle Scholar
  6. Brandenburg L-O, Merres J, Albrecht L-L, Varoga D, Pufe T (2012) Antimicrobial peptides: multifunctional drugs for different applications. Polymers 4:539–560CrossRefGoogle Scholar
  7. Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L (2008a) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003CrossRefPubMedGoogle Scholar
  8. Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednárová L, Borovičková L, Slaninová J, Fučík V (2008b) Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. ChemBioChem 9:2815–2821CrossRefPubMedGoogle Scholar
  9. Čeřovský V, Buděšínský M, Hovorka O, Cvačka J, Voburka Z, Slaninová J, Borovičková L, Fučík V, Bednárová L, Votruba I, Straka J (2009) Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem 10:2089–2099CrossRefPubMedGoogle Scholar
  10. Čeřovský V, Slaninová J, Fučík V, Monincová L, Bednárová L, Maloň P, Štokrová J (2011) Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. ChemBioChem 12:1352–1361CrossRefPubMedGoogle Scholar
  11. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406CrossRefPubMedGoogle Scholar
  12. Chou H-T, Wen H-W, Kuo T-Y, Lin C-C, Chen W-J (2010) Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 31:1811–1820CrossRefPubMedGoogle Scholar
  13. Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5:580–587CrossRefPubMedGoogle Scholar
  14. Epand RM, Epand RF (2011) Bacterial membrane lipids in the action of antimicrobial targets. J Pept Sci 17:298–305CrossRefPubMedGoogle Scholar
  15. Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim Biophys Acta 1768:2500–2509CrossRefPubMedGoogle Scholar
  16. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Centr Eur J Biol 2:1–33CrossRefGoogle Scholar
  17. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1:143–152CrossRefPubMedGoogle Scholar
  18. Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS (2008) Effect of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers (Peptide Science) 90:369–383CrossRefGoogle Scholar
  19. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202CrossRefPubMedGoogle Scholar
  20. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483CrossRefPubMedGoogle Scholar
  21. Konno K, Hisada M, Fontana R, Lorenzi CCB, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, de Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550:70–80CrossRefPubMedGoogle Scholar
  22. Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MPS, Neto JR, Hide I, Nakata Y, Yasuhara T, Nakajima T (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27:2624–2631CrossRefPubMedGoogle Scholar
  23. Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY, Hide I, Nakata Y, Mori K, Kawano M, Fuchino H, Sekita S, Neto JR (2007) Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasps Oreumenes decoratus. Peptides 28:2320–2327CrossRefPubMedGoogle Scholar
  24. Kuhn-Nentwig L (2003) Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci 60:2651–2668CrossRefPubMedGoogle Scholar
  25. Labbé-Julié C, Granier C, Albericio F, Defendini M-L, Ceard B, Rochat H, Van Rietschoten J (1991) Binding and toxicity of apamin. Characterization of the active site. Eur J Biochem 196:639–645CrossRefGoogle Scholar
  26. Lohner K, Blondele SS (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High T Scr 8:241–256Google Scholar
  27. Lyu PC, Sherman JC, Chen A, Kallenbach NR (1991) α-Helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc Natl Acad Sci USA 88:5317–5320CrossRefPubMedGoogle Scholar
  28. Monincová L, Slaninová J, Voburka Z, Hovorka O, Fučík V, Borovičková L, Bednárová L, Buděšínský M, Straka J, Čeřovský V (2009) Novel biologically active peptides from the venom of the solitary bee Macropis fulvipes (Hymenoptera: Melittidae). In: Slaninová J (ed) Collection symposium series, institute of organic chemistry and biochemistry, vol 11. Academy of Sciences of the Czech Republic, Prague, pp 77–80Google Scholar
  29. Monincová L, Buděšínský M, Slaninová J, Hovorka O, Cvačka J, Voburka Z, Fučík V, Borovičková L, Bednárová L, Straka J, Čeřovský V (2010) Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids 39:763–775CrossRefPubMedGoogle Scholar
  30. Monincová L, Slaninová J, Fučík V, Hovorka O, Voburka Z, Bednárová L, Maloň P, Štokrová J, Čeřovský V (2012) Lasiocepsin, a novel cyclic antimicrobial peptide from the venom of eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). Amino Acids 43:751–761CrossRefPubMedGoogle Scholar
  31. Oyston PCF, Fox MA, Richards SJ, Clark GC (2009) Novel peptide therapeutics for treatment of infections. J Med Microb 58:977–987CrossRefGoogle Scholar
  32. Pazderková M, Kočišová E, Pazderka T, Maloň P, Kopecký Jr. V, Monincová L, Čeřovský V, Bednárová L (2012) Antimicrobial peptide from the eusocial bee Halictus sexcinctus. Interacting with model membranes. Spectroscopy Int J 27:497–502CrossRefGoogle Scholar
  33. Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Methods Enzymol 295:1–26CrossRefPubMedGoogle Scholar
  34. Shailesh S, Neelam S, Sandeep K, Gupta GD (2009) Liposomes: a review. J Pharm Res 2:1163–1167Google Scholar
  35. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177CrossRefPubMedGoogle Scholar
  36. Terashima H, Kojima S, Homma M (2008) Flagellar motility in bacteria: structure and function of flagellar motor. Int Rew Cell Moll Biol 270:39–85CrossRefGoogle Scholar
  37. Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers (Peptide Science) 80:717–735CrossRefGoogle Scholar
  38. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers (Peptide Science) 55:4–30CrossRefGoogle Scholar
  39. Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helvetica 70:95–111CrossRefGoogle Scholar
  40. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937CrossRefPubMedGoogle Scholar
  41. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400CrossRefPubMedGoogle Scholar
  42. Wieprecht T, Dathe M, Krause M, Beyermann M, Maloy WL, MacDonnald DL, Bienert M (1997) Modulation of membrane activity of amphipathic, antimicrobial peptides by slight modification of hydrophobic moment. FEBS Lett 417:135–140CrossRefPubMedGoogle Scholar
  43. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34CrossRefPubMedGoogle Scholar
  44. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharm Rev 55:27–55CrossRefPubMedGoogle Scholar
  45. Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176CrossRefPubMedGoogle Scholar
  46. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Sabína Čujová
    • 1
    • 2
  • Jiřina Slaninová
    • 1
  • Lenka Monincová
    • 1
    • 2
  • Vladimír Fučík
    • 1
  • Lucie Bednárová
    • 1
  • Jitka Štokrová
    • 1
  • Oldřich Hovorka
    • 1
  • Zdeněk Voburka
    • 1
  • Jakub Straka
    • 3
  • Václav Čeřovský
    • 1
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Biochemistry, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  3. 3. Department of Zoology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations