Skip to main content
Log in

Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a “coiled coil” structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89(3):1874–1881

    Article  PubMed  CAS  Google Scholar 

  • Bromley EH, Channon KJ (2011) Alpha-helical peptide assemblies giving new function to designed structures. Prog Mol Biol Transl Sci 103:231–275

    Article  PubMed  CAS  Google Scholar 

  • Bucki R, Janmey PA (2006) Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Antimicrob Agents Chemother 50(9):2932–2940

    Article  PubMed  CAS  Google Scholar 

  • Castro MS, Cilli EM, Fontes W (2006) Combinatorial synthesis and directed evolution applied to the production of alpha-helix forming antimicrobial peptides analogues. Curr Protein Pept Sci 7(6):473–478

    Article  PubMed  CAS  Google Scholar 

  • Castro MS, Ferreira TC, Cilli EM, Crusca Jr. E, Mendes-Giannini MJS, Sebben A, Ricart CA, Sousa MV, Fontes W (2009) Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus (“spotted treefrog”). Peptides 30(2):291–296

  • Cespedes GF, Lorenzón EN, Vicente EF, Mendes-Giannini MJ, Fontes W, Castro MS, Cilli EM (2012) Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept Lett 19(6):596–603

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Mark AE (2011) The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur Biophys J 40(4):545–553

    Article  PubMed  CAS  Google Scholar 

  • Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK (2009) Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 96(2):552–565

    Article  PubMed  CAS  Google Scholar 

  • CLSI. Manual Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards-6ª ed. Document M7-A6 performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne, PA., 2006

  • CLSI. Manual Clinical and Laboratory Standards Institute. Reference methods for broth dilution antifungal susceptibility tests for yeasts; approved standards, CLSI document M27-A3. Clinical and Laboratory Standards Institute,Wayne, PA., 2008

  • Crusca E, Rezende A, Marchetto R, Mendes-Giannini M, Fontes W, Castro MS, Cilli E (2011) Influence of N-Terminus Modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide Hylin-a1. Biopolymers 96(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409

    Article  PubMed  CAS  Google Scholar 

  • Dennison SR, Harris F, Phoenix DA (2007) The interactions of aurein 1.2 with cancer cell membranes. Biophys Chem 127(1–2):78–83

    Article  PubMed  CAS  Google Scholar 

  • Dewan PC, Anantharaman A, Chauhan VS, Sahal D (2009) Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry 48(24):5642–5657

    Article  PubMed  CAS  Google Scholar 

  • Epand RF, Maloy L, Ramamoorthy A, Epand RM (2010) Amphipathic helical cationic antimicrobial peptides promote rapid formation of crystalline states in the presence of phosphatidylglycerol: lipid clustering in anionic membranes. Biophys J 98(11):2564–2573

    Article  PubMed  CAS  Google Scholar 

  • Falciani C, Lozzi L, Pini A, Corti F, Fabbrini M, Bernini A, Lelli B, Niccolai N, Bracci L (2007) Molecular basis of branched peptides resistance to enzyme proteolysis. Chem Biol Drug Des 69(3):216–221

    Article  PubMed  CAS  Google Scholar 

  • Fernandez DI, Gehman JD, Separovic F (2009) Membrane interactions of antimicrobial peptides from Australian frogs. Biochim Biophys Acta 1788(8):1630–1638

    Article  PubMed  CAS  Google Scholar 

  • Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Orlando F, Silvestri C, Bozzi A, Di Giulio A, Luzi C, Mangoni ML, Barra D, Saba V, Scalise G, Rinaldi AC (2006) Interaction of antimicrobial peptide temporin L with lipopolysaccharide in vitro and in experimental rat models of septic shock caused by gram-negative bacteria. Antimicrob Agents Chemother 50(7):2478–2486

    Article  PubMed  CAS  Google Scholar 

  • Giacometti A, Cirioni O, Riva A, Kamysz W, Silvestri C, Nadolski P, Della Vittoria A, Łukasiak J, Scalise G (2007) In vitro activity of aurein 1.2 alone and in combination with antibiotics against gram-positive nosocomial cocci. Antimicrob Agents Chemother 51(4):1494–1496

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T, Matsuzaki K (2001) Effects of peptide dimerization on pore formation: antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers 58(4):437–446

    Article  PubMed  CAS  Google Scholar 

  • He X, Yang S, Wei L, Liu R, Lai R, Rong M (2013) Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis. Amino Acids 44(2):481–487

    Google Scholar 

  • Hornef MW, Putsep K, Karlsson J, Refai E, Andersson M (2004) Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nat Immunol 5(8):836–843

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZQ, Vasil AI, Gera L, Vasil ML, Hodges RS (2011) Rational design of alpha-helical antimicrobial peptides to target gram-negative pathogens, acinetobacter baumannii and pseudomonas aeruginosa: utilization of charge, ‘Specificity Determinants,’ Total Hydrophobicity, Hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 77:225–240

    Google Scholar 

  • Kamysz W, Mickiewicz B, Rodziewicz-Motowidio S, Greber K, Okroj M (2006) Temporin A and its retro-analogues: synthesis, conformational analysis and antimicrobial activities. J Pept Sci 12(8):533–537. doi:10.1002/psc.762

    Article  PubMed  CAS  Google Scholar 

  • Karbalaeemohammad S, Naderi-Manesh H (2011) Two novel anticancer peptides from Aurein1.2. Int J Pept Res Ther 17(3):159–164

    Article  CAS  Google Scholar 

  • Lee JY, Yang ST, Lee SK, Jung HH, Shin SY, Hahm KS, Kim JI (2008) Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. Febs J 275(15):3911–3920

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Heng C, Swann MJ, Gehman JD, Separovic F, Aguilar MI (2010) Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Biochim Biophys Acta 1798(10):1977–1986

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li Y, Peterkofsky A, Wang G (2006) NMR studies of aurein 1.2 analogs. Biochim Biophys Acta 1758(9):1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Libério MS, Joanitti GA, Azevedo RB, Cilli EM, Zanotta LC, Nascimento AC, Sousa MV, Pires Júnior OR, Fontes W, Castro MS (2011) Anti-proliferative and cytotoxic activity of pentadactylin isolated from Leptodactylus labyrinthicus on melanoma cells. Amino Acids 40(1):51–59

    Article  PubMed  Google Scholar 

  • Liu S, Zhou L, Lakshminarayanan R, Beuerman R (2010) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16(3):199–213

    Article  PubMed  Google Scholar 

  • Lorenzón EN, Cespedes GF, Vicente EF, Nogueira LG, Bauab TM, Castro MS, Cilli EM (2012) Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob Agents Chemother 56(6):3004–3010

    Google Scholar 

  • Mäntylä T, Sirola H, Kansanen E, Korjamo T, Lankinen H, Lappalainen K, Välimaa AL, Harvima I, Närvänen A (2005) Effect of temporin A modifications on its cytotoxicity and antimicrobial activity. APMIS 113:497–505

    Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta-Biomembranes 1788(8):1687–1692

    Article  CAS  Google Scholar 

  • McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Separovic F, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J 40(4):437–446

    Article  PubMed  CAS  Google Scholar 

  • Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs?. Plos Pathogens 6(10):e1001067

    Google Scholar 

  • Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 49(7):2665–2672

    Article  PubMed  CAS  Google Scholar 

  • Pini A, Lozzi L, Bernini A, Brunetti J, Falciani C, Scali S, Bindi S, Di Maggio T, Rossolini GM, Niccolai N, Bracci L (2012) Efficacy and toxicity of the antimicrobial peptide M33 produced with different counter-ions. Amino Acids 43(1):467–473

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro SM, Almeida RG, Pereira CA, Moreira JS, Pinto MF, Oliveira AC, Vasconcelos IM, Oliveira JT, Santos MO, Dias SC, Franco OL (2011) Identification of a passiflora alata curtis dimeric peptide showing identity with 2S albumins. Peptides 32(5):868–874

    Article  PubMed  CAS  Google Scholar 

  • Rossolini GM, Mantengoli E, Docquier JD, Musmanno RA, Coratza G (2007) Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains. New Microbiol 30(3):332–339

    PubMed  Google Scholar 

  • Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666(1–2):40–50

    PubMed  CAS  Google Scholar 

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica et Biophysica Acta (BBA) Biomembranes 1778(10):2308–2317

    Article  CAS  Google Scholar 

  • Sforça ML, Oyama S, Canduri F, Lorenzi CC, Pertinhez TA, Konno K, Souza BM, Palma MS, Ruggiero Neto J, Azevedo WF, Spisni A (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43(19):5608–5617

    Article  PubMed  Google Scholar 

  • Taylor K, McCullough B, Clarke DJ, Langley RJ, Pechenick T, Hill A, Campopiano DJ, Barr PE, Dorin JR, Govan JRW (2007) Covalent dimer species of beta-defensin Defr1 display potent antimicrobial activity against multidrug-resistant bacterial pathogens. Antimicrob Agents Chemother 51(5):1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51(2):149–177

    Article  PubMed  CAS  Google Scholar 

  • Tsai P, Yang C, Chang H, Lan C (2011) Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with Yeast cell-wall carbohydrates. Plos One 6(3):e17755

    Google Scholar 

  • Welling MM, Brouwer CPJM, t Hof W, Veerman ECI, Amerongen AVN (2007) Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob Agents Chemother 51(9):3416–3419

    Article  PubMed  CAS  Google Scholar 

  • Yang ST, Kim JI, Shin SY (2009) Effect of dimerization of a beta-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnol Lett 31(2):233–237

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Shin SY (2009a) Antimicrobial and cytolytic activities and plausible mode of bactericidal action of the cell penetrating peptide penetratin and Its Lys-linked two-stranded peptide. Chem Biol Drug Des 73(2):209–215

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Shin SY (2009b) Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15(5):345–352

    Article  PubMed  CAS  Google Scholar 

  • Zhu WL, Nan YH, Hahm KS, Shin SY (2007) Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação ao Amparo a Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Nível Superior (CAPES) for financial support. EMC is senior researchers of the CNPq, and ENL was the recipient of Ph.D fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Cilli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzón, E.N., Sanches, P.R.S., Nogueira, L.G. et al. Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 44, 1521–1528 (2013). https://doi.org/10.1007/s00726-013-1475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1475-3

Keywords

Navigation