Skip to main content

Advertisement

Log in

Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana

  • Invited review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Diatoms are unicellular algae responsible for approximately 20 % of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. In the last years the interest on unicellular algae increased. On the one hand assessments suggest that diatom-mediated export production can influence climate change through uptake and sequestration of atmospheric CO2. On the other hand diatoms are in focus because they are discussed as potential producer of biofuels. To follow the one or other idea it is necessary to investigate the diatoms biochemistry in order to understand the cellular regulatory mechanisms. The sulfur assimilation and methionine synthesis pathways provide S-containing amino acids for the synthesis of proteins and a range of metabolites such as dimethylsulfoniopropionate (DMSP) in order to provide basic metabolic precursors needed for the diatoms metabolism. To obtain an insight into the localization and organization of the sulfur metabolism pathways, the genome of Thalassiosira pseudonana—a model organism for diatom research—might help to understand the fundamental questions on adaptive responses of diatoms to dynamic environmental conditions such as nutrient availability in a broader context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552

    Article  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  PubMed  CAS  Google Scholar 

  • Bradley M, Rest J, Li W-H, Schwartz N (2009) Sulfate activation enzymes: phylogeny and association with pyrophosphatase. J Mol Evol 68(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Brunold C, Schiff JA (1976) Studies of sulfate utilization of algae: 15. enzymes of assimilatory sulfate reduction in Euglena and their cellular localization. Plant Physiol 57(3):430–436

    Article  PubMed  CAS  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55(404):1765–1773

    Article  PubMed  CAS  Google Scholar 

  • Carroll KS, Gao H, Chen HY, Leary JA, Bertozzi CR (2005a) Investigation of the iron-sulfur cluster in Mycobacterium tuberculosis APS reductase: implications for substrate binding and catalysis. Biochemistry 44(44):14647–14657. doi:10.1021/bi051344a

    Article  PubMed  CAS  Google Scholar 

  • Carroll KS, Gao H, Chen HY, Stout CD, Leary JA, Bertozzi CR (2005b) A conserved mechanism for sulfonucleotide reduction. PLoS Biol 3(8):1418–1435

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  PubMed  CAS  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326(6114):655–661

    Article  CAS  Google Scholar 

  • Cole J, Howarth R, Nolan S, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 2(2):179–196

    Article  CAS  Google Scholar 

  • Crane BR, Siegel LM, Getzoff ED (1995) Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science 270(5233):59–67

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP SignalP and related tools. Nat Protoc 2(4):953–971

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206

    Article  PubMed  CAS  Google Scholar 

  • Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) A mechanistic model of the cysteine synthase complex. J Mol Biol 386(1):37–59

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi:10.1126/science.281.5374.237

    Article  PubMed  CAS  Google Scholar 

  • Foglino M, Borne F, Bally M, Ball G, Patte JC (1995) A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology-Uk 141:431–439

    Article  CAS  Google Scholar 

  • Gao Y, Schofield OM, Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol 123(3):1087–1096

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1979) The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35(1):253–266

    PubMed  CAS  Google Scholar 

  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64(5):519–530

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148(2):1055–1067. doi:10.1104/pp.108.125237

    Article  PubMed  CAS  Google Scholar 

  • Harwood J (2004) Membrane lipids in algae. In: Lipids in photosynthesis: structure, function and genetics. pp 53–64

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20(1):168–185. doi:10.1105/tpc.107.056747

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Wirtz M (2008) Metabolism of cysteine in plants and phototrophic bacteria. In: sulfur metabolism in phototrophic organisms. pp 59–91

  • Hesse H, Hoefgen R (2008) Metabolism of methionine in plants and phototrophic bacteria. In: sulfur metabolism in phototrophic organisms. pp 93–110

  • Hesse H, Kreft O, Maimann S, Zeh M, Hoefgen R (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55(404):1799–1808

    Article  PubMed  CAS  Google Scholar 

  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29(5):537–566

    Article  CAS  Google Scholar 

  • Kerr DS, Flavin M (1970) Regulation of methionine synthesis and nature of cystathionine gamma-synthase in Neurospora. J Biol Chem 245(7):1842

    PubMed  CAS  Google Scholar 

  • Kertesz MA (2001) Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol 152(3–4):279–290

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41(2):175–183

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta 705(3):348–356

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55(404):1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schurmann P, Schunemann V, Trautwein AX, Kroneck PM, Brunold C (2001) Plant adenosine 5′-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276(46):42881–42886

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Benda R, Schunemann V, Koprivova A, Schurmann P, Trautwein AX, Kroneck PM, Brunold C (2002) The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277(24):21786–21791

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Fritzemeier K, Wiedemann G, Reski R (2007) The putative moss 3′-phosphoadenosine-5′-phosphosulfate reductase is a novel form of adenosine-5′-phosphosulfate reductase without an iron-sulfur cluster. J Biol Chem 282(31):22930–22938

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Patron NJ, Keeling P, Leustek T (2008) Phylogenetic analysis of sulfate assimilation and cysteine biosynthesis in phototrophic organisms. In: Sulfur Metabolism in Phototrophic Organisms. pp 31–58

  • Krueger R, Siegel L (1982) Spinach siroheme enzymes—isolation and characterization of ferredoxin sulfite reductase and comparison of properties with ferredoxin nitrite reductase. Biochemistry 21(12):2892–2904

    Article  PubMed  CAS  Google Scholar 

  • Krueger S, Niehl A, Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32(4):349–367. doi:10.1111/j.1365-3040.2009.01928.x

    Article  PubMed  CAS  Google Scholar 

  • Leyh TS, Taylor JC, Markham GD (1988) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem 263(5):2409–2416

    PubMed  CAS  Google Scholar 

  • Li J, Lester HA (1999) Functional roles of aromatic residues in the ligand-binding domain of cyclic nucleotide-gated channels. Mol Pharmacol 55(5):873–882

    PubMed  CAS  Google Scholar 

  • MacRae IJ, Segel IH, Fisher AJ (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochemistry 40(23):6795–6804

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWweese-Scott C, Geer LY, Gwadz M, He SQ, Hurwitz DI, Jackson JD, Ke ZX, Lanczycki CJ, Liebert CA, Liu CL, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang DC, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Ann Rev Microbiol 51:73–96

    Article  CAS  Google Scholar 

  • Murillo M, Leustek T (1995) Adenosine-5′-triphosphate-sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5′-triphosphate-sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323(1):195–204

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82(1–4):27–32

    Article  PubMed  CAS  Google Scholar 

  • Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL (2010) In: Paranoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38 (Database issue):D196–203

  • Park SD, Lee JY, Kim Y, Kim JH, Lee HS (1998) Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8(3):286–294

    PubMed  CAS  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    Article  PubMed  CAS  Google Scholar 

  • Patron N, Durnford D, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8(1):39

    Article  PubMed  Google Scholar 

  • Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol 130(4):2076–2084

    Article  PubMed  CAS  Google Scholar 

  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280(16):15976–15983

    Article  PubMed  CAS  Google Scholar 

  • Rowbury RJ, Woods DD (1964) O-succinylhomoserine as intermediate in synthesis of cystathionine by Escherichia coli. J Gen Microbiol 36(3):341–358

    PubMed  CAS  Google Scholar 

  • Tejada-Jimenez M, Llamas A, Sanz-Luque E, Galvan A, Fernandez E (2007) A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci USA 104(50):20126–20130

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104(47):18807–18812. doi:10.1073/pnas.0706373104

    Article  PubMed  CAS  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41(1):15–30

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20(9):2484–2496

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Suter M, Brunold C, Kopriva S (2000) Sulfate assimilation in higher plants characterization of a stable intermediate in the adenosine 5′-phosphosulfate reductase reaction. European J Biochem/FEBS 267(12):3647–3653

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Dr. Lothar Willmitzer and Dr. Stefanie Hartmann are acknowledged for help and support in conducting the research. Financial support was provided by Max‐Planck Society and Deutsche Forschungsgemeinschaft (HE 3088/4) and is greatly acknowledged.

Conflict of interest

  The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Hesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromke, M.A., Hoefgen, R. & Hesse, H. Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana . Amino Acids 44, 1253–1265 (2013). https://doi.org/10.1007/s00726-013-1462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1462-8

Keywords

Navigation