Skip to main content
Log in

Astroglial amino acid-based transmitter receptors

  • INVITED REVIEW
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Amino acids appear in prebiotic period being one of the first organic molecules on Earth. For neurobiologists, it is of importance that AAs are not only representing building blocks of life, but are also the essential part of metabolism and cellular signaling. In the mammalian brain, the most common excitatory and inhibitory transmitters acting upon cellular plasmalemmal receptors are the amino acid glutamate and its derivative γ-aminobutyric acid, respectively. Other amino acids, i.e. aspartate, glycine, d-serine, and homocysteic acid, as well as the sulfonic acid taurine, are also active compounds involved in receptor-mediated brain signaling. Receptors for these amino acid-based transmitters are either ion channels, also referred to as ionotropic receptors, or metabotropic, i.e. seven transmembrane domain G-protein coupled receptors. In this mini-review, we focus our interest on amino acid-based transmitter receptors on neuroglia, astrocytes in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronica E, van Vliet EA, Mayboroda OA, Troost D, da Silva FH, Gorter JA (2000) Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 12(7):2333–2344

    Article  PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-d-aspartate responses of mouse central neurones in culture. J Physiol 399:247–266

    PubMed  CAS  Google Scholar 

  • Backus KH, Kettenmann H, Schachner M (1988) Effect of benzodiazepines and pentobarbital on the GABA-induced depolarization in cultured astrocytes. Glia 1(2):132–140

    Article  PubMed  CAS  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  PubMed  CAS  Google Scholar 

  • Bormann J, Kettenmann H (1988) Patch-clamp study of gamma-aminobutyric acid receptor Cl- channels in cultured astrocytes. Proc Natl Acad Sci USA 85(23):9336–9340

    Article  PubMed  CAS  Google Scholar 

  • Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311(5987):656–659

    Article  PubMed  CAS  Google Scholar 

  • Brand-Schieber E, Lowery SL, Werner P (2004) Select ionotropic glutamate AMPA/kainate receptors are expressed at the astrocyte-vessel interface. Brain Res 1007(1–2):178–182

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24(5–6):325–332

    Article  PubMed  CAS  Google Scholar 

  • Burzomato V, Frugier G, Perez-Otano I, Kittler JT, Attwell D (2010) The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol 588(Pt 18):3403–3414. doi:10.1113/jphysiol.2010.195503

    Article  PubMed  CAS  Google Scholar 

  • Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24(1):214–223

    Article  PubMed  CAS  Google Scholar 

  • Condorelli DF, Conti F, Gallo V, Kirchhoff F, Seifert G, Steinhauser C, Verkhratsky A, Yuan X (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv Exp Med Biol 468:49–67

    Article  PubMed  CAS  Google Scholar 

  • Conti F, DeBiasi S, Minelli A, Melone M (1996) Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17(3):254–258

    Article  PubMed  CAS  Google Scholar 

  • Cuenod M, Do KQ, Herrling PL, Turski WA, Matute C, Streit P (1986) Homocysteic acid, an endogenous agonist of NMDA-receptor: release, neuroactivity and localization. Adv Exp Med Biol 203:253–262

    Article  PubMed  CAS  Google Scholar 

  • Do KQ, Mattenberger M, Streit P, Cuenod M (1986) In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J Neurochem 46(3):779–786

    Article  PubMed  CAS  Google Scholar 

  • Dominy J, Eller S, Dawson R Jr (2004) Building biosynthetic schools: reviewing compartmentation of CNS taurine synthesis. Neurochem Res 29(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Enkvist MO, Holopainen I, Akerman KE (1989) Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia 2(6):397–402

    Article  PubMed  CAS  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326(2):483–504

    Article  PubMed  CAS  Google Scholar 

  • Fraser DD, Mudrick-Donnon LA, MacVicar BA (1994) Astrocytic GABA receptors. Glia 11(2):83–93

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Ghiani CA (2000) Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci 21(7):252–258

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Barcina JM, Matute C (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur J Neurosci 8(11):2379–2387

    Article  PubMed  CAS  Google Scholar 

  • Glaum SR, Holzwarth JA, Miller RJ (1990) Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc Natl Acad Sci USA 87(9):3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Glavin DP, Callahan MP, Dworkin JP, Elsila JE (2011) The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit Planet Sci 45(12):1948–1972

    Article  Google Scholar 

  • Gutiérrez-Preciado A, Romero H, Peimbert M (2010) An evolutionary perspective on amino acids. Nat Education 3(9):29

    Google Scholar 

  • Hassel B, Brathe A (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20(4):1342–1347

    PubMed  CAS  Google Scholar 

  • Hertz L, Dringen R, Schousboe A, Robinson SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57(4):417–428

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  • Jabs R, Kirchhoff F, Kettenmann H, Steinhauser C (1994) Kainate activates Ca(2+)-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices. Pflugers Arch 426(3–4):310–319

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1(8):683–692

    Article  PubMed  CAS  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438(7071):1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281(20):14151–14162

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H (1990) Chloride channels and carriers in cultured glial cells. In: Alvarez-Leefmans FJ, Russel JM (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Plenum Press, NY, pp 193–208

    Google Scholar 

  • Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31(12):653–659

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Backus KH, Schachner M (1984a) Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52(1–2):25–29

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H, Gilbert P, Schachner M (1984b) Depolarization of cultured oligodendrocytes by glutamate and GABA. Neurosci Lett 47(3):271–276

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK (1990) Chloride transport across glial membranes. In: Alvarez-Leefmans FJ, Russel JM (eds) Chloride channels and carriers in nerve, muscle, and glial cells. Plenum Press, NY, pp 159–191

    Google Scholar 

  • Kingston AE, Lowndes J, Evans N, Clark B, Tomlinson R, Burnett JP, Mayne NG, Cockerham SL, Lodge D (1998) Sulphur-containing amino acids are agonists for group 1 metabotropic receptors expressed in clonal RGT cell lines. Neuropharmacology 37(3):277–287

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff F, Mulhardt C, Pastor A, Becker CM, Kettenmann H (1996) Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem 66(4):1383–1390

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92(3):1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Kondoh T, Nishizaki T, Aihara H, Tamaki N (2001) NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci 68(15):1761–1767

    Article  PubMed  CAS  Google Scholar 

  • Lai JC, Murthy CR, Cooper AJ, Hertz E, Hertz L (1989) Differential effects of ammonia and beta-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem Res 14(4):377–389

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26(10):2673–2683

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y (2011a) Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10(3):392–402. doi:10.1111/j.1474-9726.2011.00682.x

    Article  PubMed  CAS  Google Scholar 

  • Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011b) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochimica et biophysica acta 1813(5):992–1002. doi:10.1016/j.bbamcr.2010.09.007

    Article  PubMed  CAS  Google Scholar 

  • Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4(6):481–495

    Article  PubMed  CAS  Google Scholar 

  • Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27(6):329–336

    Article  PubMed  CAS  Google Scholar 

  • Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405(2):245–248

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl channels in astrocytes of hippocampal slices. J Neurosci 9(10):3577–3583

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16(12):521–527

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  • McBean GJ (2002) Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci 23(7):299–302

    Article  PubMed  CAS  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439(7079):988–992

    PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  PubMed  CAS  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97(9):4926–4931

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256(5063):1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Grosche J, Ohlemeyer C, Kettenmann H (1993) NMDA-activated currents in Bergmann glial cells. NeuroReport 4(6):671–674

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci 14(5 Pt 1):2503–2514

    PubMed  CAS  Google Scholar 

  • Lenhossek Mv (1895) Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes. Verh Anat Ges 5:193–221

    Google Scholar 

  • Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13(5):1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54(3):605–614

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T, Matsuoka T, Nomura T, Kondoh T, Tamaki N, Okada Y (1999) Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. Biochem Biophys Res Commun 259(3):661–664

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  • Oertel J, Villmann C, Kettenmann H, Kirchhoff F, Becker CM (2007) A novel glycine receptor beta subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J Biol Chem 282(5):2798–2807

    Article  PubMed  CAS  Google Scholar 

  • Pachernegg S, Strutz-Seebohm N, Hollmann M (2012) GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci 35(4):240–249. doi:10.1016/j.tins.2011.11.010

    Article  PubMed  CAS  Google Scholar 

  • Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48(4):225–231. doi:10.1016/j.ceca.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  • Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163(8):1755–1766. doi:10.1111/j.1476-5381.2011.01374.x

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012a) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61(4):610–621. doi:10.1016/j.neuint.2011.12.001

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012b) Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept. ASN neuro 4(4):201–205. doi:10.1042/AN20120019

    Article  PubMed  Google Scholar 

  • Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice. Eur J Neurosci 7(6):1188–1198

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71(4):949–976

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13(2):101–112

    Article  PubMed  CAS  Google Scholar 

  • Puro DG, Yuan JP, Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13(2):319–326

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Arant RJ, Isacoff EY (2012) Assembly stoichiometry of the GluK2/GluK5 kainate receptor complex. Cell reports 1(3):234–240. doi:10.1016/j.celrep.2012.01.003

    Article  PubMed  CAS  Google Scholar 

  • Riquelme R, Miralles CP, De Blas AL (2002) Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22(24):10720–10730

    PubMed  CAS  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M, Klinker CM, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24(8):2951–2961

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438(7071):1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-d-aspartate receptors. Faseb J 15(7):1270–1272

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26(2–3):217–229

    Article  PubMed  CAS  Google Scholar 

  • Seifert G, Steinhauser C (2001) Ionotropic glutamate receptors in astrocytes. Prog Brain Res 132:287–299

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Savage JE, Hufeisen SJ, Rauser L, Grajkowska E, Ernsberger P, Wroblewski JT, Nadeau JH, Roth BL (2003) l-homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J Pharmacol Exp Ther 305(1):131–142

    Article  PubMed  CAS  Google Scholar 

  • Steinhäuser C, Gallo V (1996) News on glutamate receptors in glial cells. Trends Neurosci 19(8):339–345

    Article  PubMed  Google Scholar 

  • Steinhauser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4(1):19–35

    Article  PubMed  CAS  Google Scholar 

  • Stephenson FA (2006) Structure and trafficking of NMDA and GABAA receptors. Biochem Soc Trans 34(Pt 5):877–881. doi:10.1042/BST0340877

    PubMed  CAS  Google Scholar 

  • Tamaru Y, Nomura S, Mizuno N, Shigemoto R (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 106(3):481–503

    Article  PubMed  CAS  Google Scholar 

  • Teng H, Cai W, Zhou L, Zhang J, Liu Q, Wang Y, Dai W, Zhao M, Sun Z (2010) Evolutionary mode and functional divergence of vertebrate NMDA receptor subunit 2 genes. PLoS ONE 5(10):e13342. doi:10.1371/journal.pone.0013342

    Article  PubMed  Google Scholar 

  • Vauquelin L, Robiquet P (1806) The discovery of a new plant principle in Asparagus sativus. Ann Chim 57:88–93

    Google Scholar 

  • Verkhratsky A (2006) Patching the glia reveals the functional organisation of the brain. Pflugers Arch 453(3):411–420

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32(2–3):380–412

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Parpura V, Rodriguez JJ (2011) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev 66(1–2):133–151

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Rodriguez JJ, Parpura V (2012) Neurotransmitters and integration in neuronal-astroglial networks. Neurochem Res 37(11):2326–2338. doi:10.1007/s11064-012-0765-6

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. First edition edn. August Hirschwald, Berlin

  • von Blankenfeld G, Kettenmann H (1991) Glutamate and GABA receptors in vertebrate glial cells. Mol Neurobiol 5(1):31–43

    Article  Google Scholar 

  • Westergaard N, Varming T, Peng L, Sonnewald U, Hertz L, Schousboe A (1993) Uptake, release, and metabolism of alanine in neurons and astrocytes in primary cultures. J Neurosci Res 35(5):540–545

    Article  PubMed  CAS  Google Scholar 

  • Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17(2):160–168

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3(3):291–298

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96(2):721–725

    Article  PubMed  CAS  Google Scholar 

  • Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47(5):365–375

    PubMed  CAS  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN neuro 4 (2). doi:10.1042/AN20110061

Download references

Acknowledgments

Authors’ research was supported by Alzheimer’s Research Trust (UK) Programme Grant (ART/PG2004A/1) to A.V.; and by National Science Foundation (CBET 0943343) Grant to V.P.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Parpura or Alexei Verkhratsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parpura, V., Verkhratsky, A. Astroglial amino acid-based transmitter receptors. Amino Acids 44, 1151–1158 (2013). https://doi.org/10.1007/s00726-013-1458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1458-4

Keywords

Navigation