Skip to main content

Advertisement

Log in

Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure–activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

CPP:

Cell-penetrating peptide

DARR:

Dipolar-assisted rotational resonance

DIPSHIFT:

Dipolar-chemical-shift correlation

DNP:

Dynamic nuclear polarization

H-bond:

Hydrogen bond

HETCOR:

Heteronuclear correlation

HNP-1:

Human neutrophil peptide-1

LPS:

Lipopolysaccharide

MAS:

Magic angle spinning

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PG-1:

Protegrin-1

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol

PRE:

Paramagnetic relaxation enhancement

PTD:

Protein transduction domain

REDOR:

Rotational-echo double-resonance

References

  • Abbassi F, Galanth C, Amiche M, Saito K, Piesse C, Zargarian L, Hani K, Nicolas P, Lequin O, Ladram A (2008) Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetery study. Biochemistry 47:10513–10525

    Article  PubMed  CAS  Google Scholar 

  • Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M (2008) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131(1):170–176

    Article  CAS  Google Scholar 

  • Balali-Mood K, Harroun TA, Bradshaw JP (2003) Molecular dynamics simulations of a mixed DOPC/DOPG bilayer. Eur Phys J E 12:S135–S140

    Article  PubMed  CAS  Google Scholar 

  • Baumann G, Mueller P (1974) A molecular model of membrane excitability. J Supramol Struct 2(5–6):538–557

    Article  PubMed  CAS  Google Scholar 

  • Bechinger B (1999) The structure, dynamics, and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183

    Article  PubMed  CAS  Google Scholar 

  • Ben-Tal N, Honig B, Peitzsch RM, Denisov G, McLaughlin S (1996) Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J 71:561–575

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108(26):10396–10399

    Article  PubMed  CAS  Google Scholar 

  • Binder H, Lindblom G (2003) Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys J 85:982–995

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  PubMed  CAS  Google Scholar 

  • Buffy JJ, Waring AJ, Lehrer RI, Hong M (2003) Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR. Biochemistry 42(46):13725–13734

    Article  PubMed  CAS  Google Scholar 

  • Buffy JJ, McCormick MJ, Wi S, Waring A, Lehrer RI, Hong M (2004) Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry 43:9800–9812

    Article  PubMed  CAS  Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252(5010):1167–1171

    Article  CAS  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Falla TJ, Liu H, Hurst MA, Fujii CA, Mosca DA, Embree JR, Loury DJ, Radel PA, Cheng CC, Gu L, Fiddes JC (2000) Development of protegrins for the treatment and prevention of oral mucositis: structure-activity relationships of synthetic protegrin analogues. Biopolymers 55:88–98

    Article  PubMed  CAS  Google Scholar 

  • Christiaens B, Symoens S, Verheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269(12):2918–2926

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501(2–3):146–150

    Article  PubMed  CAS  Google Scholar 

  • De Dios AC, Oldfield E (1994) Chemical shifts of carbonyl carbons in peptides and proteins. J Am Chem Soc 116:11485–11488

    Google Scholar 

  • De Paëpe G (2012) Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu Rev Phys Chem 63:661–684

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  • Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8(2):84–87

    PubMed  CAS  Google Scholar 

  • Dietz GP, Stockhausen KV, Dietz B, Falkenburger BH, Valbuena P, Opazo F, Lingor P, Meuer K, Weishaupt JH, Schulz JB, Bähr M (2008) Membrane-permeable Bcl-xL prevents MPTP-induced dopaminergic neuronal loss in the substantia nigra. J Neurochem 104(3):757–765

    PubMed  CAS  Google Scholar 

  • Doherty T, Waring AJ, Hong M (2006a) Membrane-bound conformation and topology of the antimicrobial peptide tachyplesin I by solid-state NMR. Biochemistry 45:13323–13330

    Article  PubMed  CAS  Google Scholar 

  • Doherty T, Waring AJ, Hong M (2006b) Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR. Biochim Biophys Acta 1758:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Doherty T, Su Y, Hong M (2010) High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J Mol Bio 401(4):642–652

    Article  CAS  Google Scholar 

  • Dorairaj S, Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104(12):4943–4948

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  PubMed  CAS  Google Scholar 

  • Fahrner RL, Dieckmann T, Harwig SS, Lehrer RI, Eisenberg D, Feigon J (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol 3:543–550

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Carneado J, Van Gool M, Martos V, Castel S, Prados P, De Mendoza J, Giralt E (2005) Highly efficient, nonpeptidic oligo-guanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc 127:869–874

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem 6:2126–2142

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the TAT protein from human lmmunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Freites JA, Tobias DJ, von Heijne G, White SH (2005) Interface connections of a transmembrane voltage sensor. Proc Natl Acad Sci USA 102(42):15059–15064

    Article  PubMed  CAS  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840

    Article  PubMed  CAS  Google Scholar 

  • Glukhov E, Stark M, Burrows LL, Deber CM (2005) Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem 280(40):33960–33967

    Article  PubMed  CAS  Google Scholar 

  • Gratton J-P, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R, Giordano FJ, Sessa WC (2003) Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat Med 9:357–362

    Article  PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus TAT trans-activator protein. Cell 55(6):1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Gullion T, Schaefer J (1989) Rotational-echo doubleresonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  • Guo Q, Zhao G, Hao F, Guan Y (2012) Effects of the TAT peptide orientation and relative location on the protein transduction efficiency. Chem Biol Drug Des 79(5):683–690

    Article  PubMed  CAS  Google Scholar 

  • Haack T, Peczuh MW, Salvatella X, Sanchez-Quesada J, de Mendoza J, Hamilton AD, Giralt E (1999) Surface recognition and helix stabilization of a tetraaspartate peptide by shape and electrostatic complementarity of an artificial receptor. J Am Chem Soc 121:11813–11820

    Article  CAS  Google Scholar 

  • Herce HD, Garcia AE (2007) Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc Natl Acad Sci USA 104(52):20805–20810

    Article  PubMed  CAS  Google Scholar 

  • Hong M (1999) Resonance assignment of 13C/15N labeled proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR 15:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hong M (2006) Oligomeric structure, dynamics, and orientation, of membrane proteins from solid-state NMR. Structure 14:1731–1740

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 20(4):641–655

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Fritzsching KJ, Williams JK (2012a) Hydrogen-bonding partner of the proton-conducting histidine in the influenza m2 proton channel revealed from 1h chemical shifts. J Am Chem Soc 134:14753–14755

    Google Scholar 

  • Hong M, Zhang Y, Hu F (2012b) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  PubMed  CAS  Google Scholar 

  • Hu KN, Yau WM, Tycko R (2010) Detection of a transient intermediate in a rapid protein folding process by solid-state nuclear magnetic resonance. J Am Chem Soc 132(1):24–25

    Article  PubMed  CAS  Google Scholar 

  • Huster D, Yao XL, Hong M (2002) Membrane protein topology probed by H-1 spin diffusion from lipids using solid-state NMR spectroscopy. J Am Chem Soc 124(5):874–883

    Article  PubMed  CAS  Google Scholar 

  • Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate 13C–15N distance measurements in uniformly 13C,15N-labeled peptides. J Am Chem Soc 123:3507–3519

    Article  PubMed  CAS  Google Scholar 

  • Jing X, Yang M, Kasimova MR, Malmsten M, Franzyk H, Jorgensen L, Foged C, Nielsen HM (2012) Membrane adsorption and binding, cellular uptake and cytotoxicity of cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone: effects of hydrogen bonding and α-chirality in the β-peptoid residues. Biochim Biophys Acta 1818(11):2660–2668

    Article  PubMed  CAS  Google Scholar 

  • Khafagya E-S, Morishitaa M, Isowab K, Imaib J, Takayamaa K (2009) Effect of cell-penetrating peptides on the nasal absorption of insulin. J Contolled Release 133(2):103–108

    Article  CAS  Google Scholar 

  • Letoha T, Gaál S, Somlai C, Czajlik A, Perczel A, Penke B (2003) Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit 16:272–279

    Article  PubMed  CAS  Google Scholar 

  • Li S, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133(5):1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Li L, Vorobyov I, Allen TW (2008) Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. J Phys Chem B 112(32):9574–9587

    Article  PubMed  CAS  Google Scholar 

  • Li S, Su Y, Luo W, Hong M (2010) Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem B 114(11):4063–4069

    Article  PubMed  CAS  Google Scholar 

  • Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The Penultimate Rotomer Library. Prot: Struct Func Genet 40:389–408

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    Article  PubMed  CAS  Google Scholar 

  • Luo W, Hong M (2010) Conformational changes of an ion channel detected through water–protein interactions using solid-state NMR spectroscopy. J Am Chem Soc 132(7):2378–2384

    Article  PubMed  CAS  Google Scholar 

  • Madani F, Lindberg S, Langel U, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. 2011:414729

    Google Scholar 

  • Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna D, Bozzi A, Barra D, Simmaco M (2000) Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M (2006) Membrane-dependent oligomeric structure and pore formation of a b-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci USA 103:16242–16247

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Murase O, Tokuda H, Funakoshi S, Fujii N, Miyajima K (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33:3342–3349

    Article  PubMed  CAS  Google Scholar 

  • McDermott AE (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DJ, Steinman L, Kim DT, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56(5):318–325

    Article  PubMed  CAS  Google Scholar 

  • Persson D, Thorén PE, Nordén B (2001) Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett 505(2):307

    Article  PubMed  CAS  Google Scholar 

  • Renault M, Cukkemane A, Baldus M (2011) Solid-state NMR spectroscopy of complex molecules. Angew Chem Int Ed 49:8346–8357

    Article  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  • Rienstra CM, Hohwy M, Hong M (2000) 2D and 3D 15N–13C–13C NMR chemical shift correlation spectroscopy of solids: assignment of MAS spectra of peptides. J Am Chem Soc 122:10979–10990

    Article  CAS  Google Scholar 

  • Robert GG (2010) Spectroscopy: Clear signals from surfaces. Nature 468:381–382

    Google Scholar 

  • Rothbard JB, Jessop TC, Wender PA (2005) Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 57(4):495

    Article  PubMed  CAS  Google Scholar 

  • Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A (1998) Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421:263–267

    Article  PubMed  CAS  Google Scholar 

  • Rouser G, Nelson GJ, Fleischer S, Simon G (1968) Biological Membranes, 2nd edn. Academic Press, London, pp 5–69

    Google Scholar 

  • Sanchez-Quesada J, Seel C, Prados P, de Mendoza J, Dalcol I, Giralt E (1996) Anion helicates: double strand helical self-assembly of chiral bicyclic guanidinium dimers and tetramers around sulfate templates. J Am Chem Soc 118(1):277–278

    Article  CAS  Google Scholar 

  • Schmidt N, Mishra A, Lai G, Wong G (2009) Arginine-rich cell-penetrating peptides. FEBS Letters 584(9):1806–1813

    Google Scholar 

  • Schmidt NW, Tai KP, Kamdar K, Mishra A, Lai GH, Zhao K, Ouellette AJ, Wong GC (2012) Arginine in α-defensins: differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide–lipid phase behavior. J Biol Chem 287(26):21866–21872

    Article  PubMed  CAS  Google Scholar 

  • Schug KA, Lindner W (2005) Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev 105:67–114

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285(5433):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Shai Y, Oren Z (2001) From “carpet” mechanism to de novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10):1629–1641

    Article  PubMed  CAS  Google Scholar 

  • Sperandeo P, Deho G, Polissi A (2009) The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta 1791:594–602

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engstrom Å, Bennich H, Boman HG (1981) Sequence and specificity of two antimicrobial proteins involved in insect immunity. Nature 292:246–248

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Hong M (2011) Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes. J Phys Chem B 115(36):10758–10767

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Mani R, Doherty T, Waring AJ, Hong M (2008a) Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR. J Mol Biol 381(5):1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Mani R, Hong M (2008b) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J Am Chem Soc 130(27):8856–8864

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Doherty T, Waring AJ, Ruchala P, Hong M (2009) Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from 13C, 31P, and 19F solid-state NMR. Biochemistry 48(21):4587–4595

    Article  PubMed  CAS  Google Scholar 

  • Su Y, DeGrado WF, Hong M (2010a) Orientation, dynamics, and lipid interaction of an antimicrobial arylamide investigated by 19F and 31P solid-state NMR spectroscopy. J Am Chem Soc 132(26):9197–9205

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Waring AJ, Ruchala P, Hong M (2010b) Membrane-bound dynamic structure of an Arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR. Biochemistry 49(29):6009–6020

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Waring AJ, Ruchala P, Hong M (2011) Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry 50(12):2072–2083

    Article  PubMed  CAS  Google Scholar 

  • Sundlass NK, Raines RT (2011) Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase. Biochemistry 50(47):10293–10299

    Article  PubMed  CAS  Google Scholar 

  • Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J (2006) Crystal structures of human alpha-defensins HNP4, HD5, and HD6. Protein Sci 15:2749–2760

    Article  PubMed  CAS  Google Scholar 

  • Takechi Y, Tanaka H, Kitayama H, Yoshii H, Tanaka M, Saito H (2011) Comparative study on the interaction of cell-penetrating polycationic polymers with lipid membranes. Chem Phys Lipids 165(1):51–58

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Hong M (2009) Structure and mechanism of β-hairpin antimcrobial pepetides in lipid bilayers from solid-state NMR spectroscopy. Mol BioSyst 5:317–322

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Waring AJ, Hong M (2007) Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J Am Chem Soc 129(37):11438–11446

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Waring AJ, Hong M (2008a) Arginine dynamics in a membrane-bound cationic beta-hairpin peptide from solid-state NMR. ChemBioChem 9(9):1487–1492

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Waring AJ, Lehrer RI, Hong M (2008b) Effects of guanidinium-phosphate hydrogen bonding on the membrane-bound structure and activity of an arginine-rich membrane peptide from solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47(17):3202–3205

    Article  PubMed  CAS  Google Scholar 

  • Thundimadathil J, Roeske RW, Guo L (2006) Effect of membrane mimicking environment on the conformation of a pore-forming (xSxG)6 peptide. Biopolymers 84:317–328

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Biophys Chem 62:279–299

    Article  CAS  Google Scholar 

  • Ulmschneider MB, Ulmschneider JP (2008) Membrane adsorption, folding, insertion and translocation of synthetic trans-membrane peptides. J Membr Biol 25(3):245–257

    Article  CAS  Google Scholar 

  • von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  CAS  Google Scholar 

  • Vorobyov I, Li L, Allen TW (2008) Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. J Phys Chem B 112(32):9588–9602

    Article  PubMed  CAS  Google Scholar 

  • Weissig V, D’Souz GG (2012) Organelle-Specific Pharmaceutical Nanotechnolog. Wieley, New Jersey Chapter 22:403

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97(24):13003–13008

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60(4–5):452

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  PubMed  CAS  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Hong T, Waring A, Lehrer RI, Hong M (2002) Solid-state NMR investigations of peptide-lipid interaction and orientation of a beta-sheet antimicrobial peptide, protegrin. Biochemistry 41(31):9852–9862

    Article  PubMed  CAS  Google Scholar 

  • Yao XL, Schmidt-Rohr K, Hong M (2001) Medium- and long-distance 1H–13C heteronuclear correlation NMR in solids. J Magn Reson 149(1):139–143

    Article  CAS  Google Scholar 

  • Ye J, Fox SA, Cudic M, Rezler EM, Lauer JL, Fields GB, Terentis AC (2010) Determination of penetratin secondary structure in live cells with Raman microscopy. J Am Chem Soc 132(3):980

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  PubMed  CAS  Google Scholar 

  • Yoo J, Cui Q (2008) Does arginine remain protonated in the lipid membrane? Insights from microscopic pKa calculations. Biophys J 94(8):L61

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 54:5449–5453

    Article  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Google Scholar 

  • Zhang B, Liu Y, Gou S, Duan C, You X (1999) 4-(1H, 3H+-l, 3-Benzimidazol-2-ylio)pyridine N-oxide dihydrogenphosphate monohydrate. Acta Crystallogr C 55:1929–1930

    Google Scholar 

  • Zhang W, Smith SO (2005) Mechanism of penetration of Antp(43–58) into membrane bilayers. Biochemistry 44:10110–10118

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Doherty T, Li J, Lu W, Barinka C, Lubkowski J, Hong M (2010a) Resonance assignment and three-dimensional structure determination of a human alpha-defensin, HNP-1, by solid-state NMR. J Mol Biol 397(2):408–422

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lu W, Hong M (2010b) The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Biochemistry 49(45):9770–9782

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Blatter XL, Seelig A, Seelig J (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42(30):9185–9194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The SSNMR research reviewed in this work was supported by grant GM066976 from National Institutes of Health (NIH) to M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Li, S. & Hong, M. Cationic membrane peptides: atomic-level insight of structure–activity relationships from solid-state NMR. Amino Acids 44, 821–833 (2013). https://doi.org/10.1007/s00726-012-1421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1421-9

Keywords

Navigation