Skip to main content
Log in

Improvement of enzymatic stability and intestinal permeability of deuterohemin-peptide conjugates by specific multi-site N-methylation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The deuterohemin-peptide conjugate, DhHP-6 (Dh-β-AHTVEK-NH2), is a microperoxidase mimetic, which has demonstrated substantial benefits in vivo as a scavenger of reactive oxygen species (ROS). In this study, specific multi-site N-methylated derivatives of DhHP-6 were designed and synthesized to improve metabolic stability and intestinal absorption, which are important factors for oral delivery of therapeutic peptides and proteins. The DhHP-6 derivatives were tested for (1) scavenging potential of hydrogen peroxide (H2O2); (2) permeability across Caco-2 cell monolayers and everted gut sacs; and (3) enzymatic stability in serum and intestinal homogenate. The results indicated that the activities of the DhHP-6 derivatives were not influenced by N-methylation, and that tri-N-methylation of DhHP-6 could significantly increase intestinal flux, resulting in a two- to threefold higher apparent permeability coefficient. In addition, molecules with N-methylation at selected sites (e.g., Glu residue) showed high resistance against proteolytic degradation in both diluted serum and intestinal preparation, with 50- to 140-fold higher half-life values. These findings suggest that the DhHP-6 derivatives with appropriate N-methylation could retain activity levels equivalent to that of the parent peptide, while showing enhanced intestinal permeability and stability against enzymatic degradation. The tri-N-methylated peptide Dh-β-AH(Me)T(Me)V(Me)EK-NH2 derived from this study may be developed as a promising candidate for oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

APx:

Ascorbate peroxidase

PEG:

Polyethylene glycol

DMF:

N,N-dimethylformamide

HOBT:

1-Hydroxy-1H-benzotriazole

NMM:

N-methylmorpholine

HATU:

O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate

HOAt:

3H-[1,2,3]-triazolo[4,5-b]pyridin-3-ol

DIEA:

N,N-diisopropylethylamine

NMP:

N-methylpyrrolidone

PyBop:

Benzotriazole-1-yl-oxytripyrrolidino-phosphonium hexafluorophosphate

TFA:

Trifluoroacetic acid

R-CHCA:

R-cyano-4-hydroxycinnamic acid

DMEM:

Dulbecco’s Modified Eagle’s Medium

TEER:

Transepithelial electrical resistance

HBSS:

Hank’s balanced salt solution

References

  • Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885

    Article  PubMed  CAS  Google Scholar 

  • Artursson P, Magnusson C (1990) Epithelial transport of drugs in cell culture. II: Effect of extracellular calcium concentration on the paracellular transport of drugs of different lipophilicities across monolayers of intestinal epithelial (Caco-2) cells. J Pharm Sci 79:595–600

    Article  PubMed  CAS  Google Scholar 

  • Barthe L, Woodley JF, Kenworthy S, Houin G (1998) An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet 23:313–323

    Article  PubMed  CAS  Google Scholar 

  • Barthe L, Woodley JF, Houin G (1999) Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol 13:154–168

    Article  PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Bernkop-Schnürch A, Walker G (2001) Multifunctional matrices for oral peptide delivery. Crit Rev Ther Drug Carrier Syst 18:459–501

    Article  PubMed  Google Scholar 

  • Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H (2008) Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl 47:2595–2599

    Article  PubMed  CAS  Google Scholar 

  • Burton PS, Conradi RA, Hilgers AR, Ho NF (1993) Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem Biophys Res Commun 190:760–766

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Patel NS, Kvale EO, Brown PA, Stewart KN, Mota-Filipe H, Sharpe MA, Di Paola R, Cuzzocrea S, Thiemermann C (2004) EUK-134 reduces renal dysfunction and injury caused by oxidative and nitrosative stress of the kidney. Am J Nephrol 24:165–177

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee J, Gilon C, Hoffman A, Kessler H (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–1342

    Article  PubMed  CAS  Google Scholar 

  • Day BJ (2004) Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today 9:557–566

    Article  PubMed  CAS  Google Scholar 

  • Gan LS, Niederer T, Eads C, Thakker D (1993) Evidence for predominantly paracellular transport of thyrotropin-releasing hormone across Caco-2 cell monolayers. Biochem Biophys Res Commun 197:771–777

    Article  PubMed  CAS  Google Scholar 

  • Gao JN, Hugger ED, Beck-Westermeyer MS, Borchardt RT (2001) Estimating intestinal mucosal permeation of compounds using Caco-2 cell monolayers. Curr Protoc Pharmacol Chapter 7:Unit 7.2

  • Gentilucci L, De MR, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16:3185–3203

    Article  PubMed  CAS  Google Scholar 

  • Grunwald J, Rejtar T, Sawant R, Wang Z, Torchilin VP (2009) TAT peptide and its conjugates: proteolytic stability. Bioconjug Chem 20:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Guan SW, Li PF, Luo J, Li YY, Huang L, Wang G, Zhu LM, Fan HK, Li W, Wang LP (2010) A deuterohemin peptide extends lifespan and increases stress resistance in Caenorhabditis elegans. Free Radic Res 44:813–820

    Article  PubMed  CAS  Google Scholar 

  • Hamman JH, Enslin GM, Kotzé AF (2005) Oral delivery of peptide drugs: barriers and developments. BioDrugs 19:165–177

    Article  PubMed  CAS  Google Scholar 

  • Han HK, Stewart BH, Doherty AM, Cody WL, Amidon GL (1998) In vitro stability and intestinal absorption characteristics of hexapeptide endothelin receptor antagonists. Life Sci 63:1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Hess S, Ovadia O, Shalev DE, Senderovich H, Qadri B, Yehezkel T, Salitra Y, Sheynis T, Jelinek R, Gilon C, Hoffman A (2007) Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability. J Med Chem 50:6201–6211

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ (2002) Protein drug oral delivery: the recent progress. Arch Pharm Res 25:572–584

    Article  PubMed  CAS  Google Scholar 

  • Lennernäs H (1998) Human intestinal permeability. J Pharm Sci 87:403–410

    Article  PubMed  Google Scholar 

  • Linde Y, Ovadia O, Safrai E, Xiang Z, Portillo FP, Shalev DE, Haskell-Luevano C, Hoffman A, Gilon C (2008) Structure–activity relationship and metabolic stability studies of backbone cyclization and N-methylation of melanocortin peptides. Biopolymers 90:671–682

    Article  PubMed  CAS  Google Scholar 

  • Lister-James J, Dean RT, Pearson DA, Wilson DM (2001) Novel somatostatin analogs. WO 01/44177 A2

  • Liu, YL (2003) Peptide mimics of peroxidase with anti-cataract activity. Dissertation, University of Jilin, pp 65–70

  • Liu YL, Guo LL, Roger R, Luo GM, Li W (2001) The method improvement of synthesis and purification of deuterohemin. Acta Sci Nat Univ Jilin, 91–92

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20:153–214

    Article  PubMed  CAS  Google Scholar 

  • Mandelman D, Schwarz FP, Li H, Poulos TL (1998) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci 7:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Masini E, Cuzzocrea S, Mazzon E, Marzocca C, Mannaioni PF, Salvemini D (2002) Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br J Pharmacol 136:905–917

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (2007) Oxidative damage in nucleic acids and Parkinson’s disease. J Neurosci Res 85:919–934

    Article  PubMed  CAS  Google Scholar 

  • Nestor JJ Jr (2009) The medicinal chemistry of peptides. Curr Med Chem 16:4399–4418

    Article  PubMed  CAS  Google Scholar 

  • Ovadia O, Greenberg S, Chatterjee J, Laufer B, Opperer F, Kessler H, Gilon C, Hoffman A (2011) The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol Pharm 8:479–487

    Article  PubMed  CAS  Google Scholar 

  • Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Diplock AT (1993) Current status of antioxidant therapy. Free Radic Biol Med 15:77–96

    Article  PubMed  CAS  Google Scholar 

  • Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang L, Pinkerton KE (2002) Inhibition of tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic Biol Med 33:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Takács-Novák K, Avdeef A, Box KJ, Podányi B, Szász G (1994) Determination of protonation macro- and microconstants and octanol/water partition coefficient of the antiinflammatory drug niflumic acid. J Pharm Biomed Anal 12:1369–1377

    Article  PubMed  Google Scholar 

  • Wang JY, Zhu SG, Xu CF (2002) Biochemistry, 3rd edn. Higher education press, Beijing, pp 174, 402–405

  • Wang LP, Liu YL, Yang H, Li W (2004) Synthesis and anti-cataract activity of a novel peroxidase mimetics. Chem J Chin Univ 25:2171–2173

    CAS  Google Scholar 

  • Watson CJ, Rowland M, Warhurs G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 281:C388–C397

    PubMed  CAS  Google Scholar 

  • Woodley JF (1994) Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst 11:61–95

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30901863, 20872048) and China Postdoctoral Science Foundation (No. 20110491321). We gratefully acknowledge Hui Cai and Xu Yang (Changchun BCHT Co. Ltd.) for their assistance with peptide synthesis.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Chen or Wei Kong.

Additional information

Q.-G. Dong and Y. Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1808 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, QG., Zhang, Y., Wang, MS. et al. Improvement of enzymatic stability and intestinal permeability of deuterohemin-peptide conjugates by specific multi-site N-methylation. Amino Acids 43, 2431–2441 (2012). https://doi.org/10.1007/s00726-012-1322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1322-y

Keywords

Navigation