Skip to main content
Log in

Modafinil improves performance in the multiple T-Maze and modifies GluR1, GluR2, D2 and NR1 receptor complex levels in the C57BL/6J mouse

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Modafinil has been shown to modify behavioural and cognitive functions and to effect several brain receptors. Effects, however, were not observed at the receptor protein complex level and it was therefore the aim of the study to train mice in the multiple T-Maze (MTM) as a paradigm for spatial memory and to determine paralleling brain receptor complex levels. Sixty C57BL/6J mice were used in the study and divided into four groups (trained drug injected; trained vehicle injected; yoked drug injected; yoked vehicle injected). Animals obtained training for 4 days and were killed 6 h following the last training session on day 4. Hippocampi were dissected from the brain, membrane fractions were prepared by ultracentrifugation and were run on blue-native gels and immunoblotted with antibodies against major brain receptors. Modafinil treatment led to decreased latency and increased average speed, but not to changes in pathlength and number of correct decisions in the MTM. Drug effects were modifying receptor complexes of GluR1, GluR2, D2 and NR1. Training effects on receptor complex levels were observed for GluR3, D1 and nicotinic acetylcholine receptor alpha 7 (Nic7). GluR1 levels were correlating with GluR2 and D1 levels were correlating with D2 and NR1. Involvement of the glutamatergic, NMDA, dopaminergic and nicotinergic system in modafinil and memory training were herein described for the first time. A brain receptor complex pattern was revealed showing the concerted action following modafinil treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnati LF, Ferre S, Cortelli P, Fuxe K (1995) A brief appraisal on some aspects of the receptor–receptor interaction. Neurochem Int 27:139–146

    Article  PubMed  CAS  Google Scholar 

  • Beracochea D, Celerier A, Borde N, Valleau M, Peres M, Pierard C (2002) Improvement of learning processes following chronic systemic administration of modafinil in mice. Pharmacol Biochem Behav 73:723–728

    Article  PubMed  CAS  Google Scholar 

  • Blackwell AD, Paterson NS, Barker RA, Robbins TW, Sahakian BJ (2008) The effects of modafinil on mood and cognition in Huntington’s disease. Psychopharmacology 199:29–36

    Article  PubMed  CAS  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF, Fuxe K (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT (A) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401:605–610

    Article  PubMed  CAS  Google Scholar 

  • Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, Rivera A, Haegeman G, Agnati LF, Tarakanov AO, Fuxe K (2011) Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions. Biochem Biophys Res Commun 404:928–934

    Article  PubMed  CAS  Google Scholar 

  • de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S (2001) Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats. NeuroReport 12:3533–3537

    Article  Google Scholar 

  • El-Ghundi M, O’Dowd BF, George SR (2007) Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 18:37–66

    PubMed  CAS  Google Scholar 

  • Ellis KA, Mehta MA, Wesnes KA, Armstrong S, Nathan PJ (2005) Combined D1/D2 receptor stimulation under conditions of dopamine depletion impairs spatial working memory performance in humans. Psychopharmacology 181:771–780

    Article  PubMed  CAS  Google Scholar 

  • Ferrada C, Ferre S, Casado V, Cortes A, Justinova Z, Barnes C, Canela EI, Goldberg SR, Leurs R, Lluis C, Franco R (2008) Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology 55:190–197

    Article  PubMed  CAS  Google Scholar 

  • Ferraro L, Antonelli T, O’Connor WT, Tanganelli S, Rambert FA, Fuxe K (1998) The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 253:135–138

    Article  PubMed  CAS  Google Scholar 

  • Ferraro L, Antonelli T, Tanganelli S, O’Connor WT, Perez de la Mora M, Mendez-Franco J, Rambert FA, Fuxe K (1999) The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. Neuropsychopharmacology 20:346–356

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Canals M, Torvinen M, Marcellino D, Terasmaa A, Genedani S, Leo G, Guidolin D, Diaz-Cabiale Z, Rivera A, Lundstrom L, Langel U, Narvaez J, Tanganelli S, Lluis C, Ferre S, Woods A, Franco R, Agnati LF (2007) Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. J Neural Transm 114:49–75

    Article  PubMed  CAS  Google Scholar 

  • Ghafari M, Falsafi SK, Hoeger H, Lubec G (2011) Hippocampal levels of GluR1 and GluR2 complexes are modulated by training in the multiple T-Maze in C57BL/6J mice. Brain Struct Funct. doi:10.1007/s00429-00011-00335-00428 (in press)

    PubMed  Google Scholar 

  • Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22:5619–5629

    PubMed  CAS  Google Scholar 

  • Heo S, Patil SS, Jung G, Hoger H, Lubec G (2010) A serotonin receptor 1A containing complex in hippocampus of PWD/PhJ mice is linked to training effects in the Barnes maze. Behav Brain Res 216:389–395

    Article  PubMed  Google Scholar 

  • Jasinski DR (2000) An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J Psychopharmacol 14:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kahbazi M, Ghoreishi A, Rahiminejad F, Mohammadi MR, Kamalipour A, Akhondzadeh S (2009) A randomized, double-blind and placebo-controlled trial of modafinil in children and adolescents with attention deficit and hyperactivity disorder. Psychiatry Res 168:234–237

    Article  PubMed  CAS  Google Scholar 

  • Kang SU, Fuchs K, Sieghart W, Pollak A, Csaszar E, Lubec G (2009) Gel-based mass spectrometric analysis of a strongly hydrophobic GABAA-receptor subunit containing four transmembrane domains. Nat Protoc 4:1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Korotkova TM, Klyuch BP, Ponomarenko AA, Lin JS, Haas HL, Sergeeva OA (2007) Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors. Neuropharmacology 52:626–633

    Article  PubMed  CAS  Google Scholar 

  • Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M (1992) Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat. Brain Res 591:319–326

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319:561–569

    Article  PubMed  CAS  Google Scholar 

  • Marcellino D, Ferre S, Casado V, Cortes A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283:26016–26025

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Riedel WJ (2006) Dopaminergic enhancement of cognitive function. Curr Pharm Des 12:2487–2500

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Montgomery AJ, Kitamura Y, Grasby PM (2008) Dopamine D2 receptor occupancy levels of acute sulpiride challenges that produce working memory and learning impairments in healthy volunteers. Psychopharmacology 196:157–165

    Article  PubMed  CAS  Google Scholar 

  • Mele A, Avena M, Roullet P, De Leonibus E, Mandillo S, Sargolini F, Coccurello R, Oliverio A (2004) Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav Pharmacol 15:423–431

    Article  PubMed  CAS  Google Scholar 

  • Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502

    Article  PubMed  CAS  Google Scholar 

  • Mitchell HA, Bogenpohl JW, Liles LC, Epstein MP, Bozyczko-Coyne D, Williams M, Weinshenker D (2008) Behavioral responses of dopamine beta-hydroxylase knockout mice to modafinil suggest a dual noradrenergic-dopaminergic mechanism of action. Pharmacol Biochem Behav 91:217–222

    Article  PubMed  CAS  Google Scholar 

  • Müller U, Steffenhagen N, Regenthal R, Bublak P (2004) Effects of modafinil on working memory processes in humans. Psychopharmacology 177:161–169

    Article  PubMed  Google Scholar 

  • Paterson NE, Fedolak A, Olivier B, Hanania T, Ghavami A, Caldarone B (2010) Psychostimulant-like discriminative stimulus and locomotor sensitization properties of the wake-promoting agent modafinil in rodents. Pharmacol Biochem Behav 95:449–456

    Article  PubMed  CAS  Google Scholar 

  • Patil SS, Sunyer B, Hoger H, Lubec G (2009) Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res 198:58–68

    Article  PubMed  Google Scholar 

  • Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28:8462–8469

    Article  PubMed  CAS  Google Scholar 

  • Randall DC, Viswanath A, Bharania P, Elsabagh SM, Hartley DE, Shneerson JM, File SE (2005) Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? J Clin Psychopharmacol 25:175–179

    Article  PubMed  CAS  Google Scholar 

  • Rasetti R, Mattay VS, Stankevich B, Skjei K, Blasi G, Sambataro F, Arrillaga-Romany IC, Goldberg TE, Callicott JH, Apud JA, Weinberger DR (2010) Modulatory effects of modafinil on neural circuits regulating emotion and cognition. Neuropsychopharmacology 35:2101–2109

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi A, Mandillo S, Oliverio A, Mele A (2007) D1 and D2 receptor antagonist injections in the prefrontal cortex selectively impair spatial learning in mice. Neuropsychopharmacology 32:309–319

    Article  PubMed  CAS  Google Scholar 

  • Sase A, Khan D, Hoger H, Lubec G (2011) Intraperitoneal injection of saline modulates hippocampal brain receptor complex levels but does not impair performance in the Morris Water Maze. Amino Acids. doi:10.1007/s00726-00011-01130-00729 (in press)

    PubMed  Google Scholar 

  • Seeman P, Guan HC, Hirbec H (2009) Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse 63:698–704

    Article  PubMed  CAS  Google Scholar 

  • Shuman T, Wood SC, Anagnostaras SG (2009) Modafinil and memory: effects of modafinil on Morris water maze learning and Pavlovian fear conditioning. Behav Neurosci 123:257–266

    Article  PubMed  CAS  Google Scholar 

  • Spence SA, Green RD, Wilkinson ID, Hunter MD (2005) Modafinil modulates anterior cingulate function in chronic schizophrenia. Br J Psychiatry 187:55–61

    Article  PubMed  Google Scholar 

  • Tsanov M, Lyons DG, Barlow S, Gonzalez Reyes RE, O’Mara SM (2010) The psychostimulant modafinil facilitates water maze performance and augments synaptic potentiation in dentate gyrus. Neuropharmacology 59:9–19

    Article  PubMed  CAS  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology 165:260–269

    PubMed  CAS  Google Scholar 

  • Turner DC, Clark L, Pomarol-Clotet E, McKenna P, Robbins TW, Sahakian BJ (2004) Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology 29:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Ward CP, Harsh JR, York KM, Stewart KL, McCoy JG (2004) Modafinil facilitates performance on a delayed nonmatching to position swim task in rats. Pharmacol Biochem Behav 78:735–741

    Article  PubMed  CAS  Google Scholar 

  • Welinder C, Ekblad L (2010) Coomassie staining as loading control in Western blot analysis. J Proteome Res 10:1416–1419

    Article  Google Scholar 

  • Wilkerson A, Levin ED (1999) Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 89:743–749

    Article  PubMed  CAS  Google Scholar 

  • Winder-Rhodes SE, Chamberlain SR, Idris MI, Robbins TW, Sahakian BJ, Muller U (2010) Effects of modafinil and prazosin on cognitive and physiological functions in healthy volunteers. J Psychopharmacol 24:1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Young JW (2009) Dopamine D1 and D2 receptor family contributions to modafinil-induced wakefulness. J Neurosci 29:2663–2665

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Geyer MA (2010) Action of modafinil-increased motivation via the dopamine transporter inhibition and D1 receptors? Biol Psychiatry 67:784–787

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have declared that no conflict of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Lubec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure. 1 (PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sase, S., Khan, D., Sialana, F. et al. Modafinil improves performance in the multiple T-Maze and modifies GluR1, GluR2, D2 and NR1 receptor complex levels in the C57BL/6J mouse. Amino Acids 43, 2285–2292 (2012). https://doi.org/10.1007/s00726-012-1306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1306-y

Keywords

Navigation