Skip to main content

Advertisement

Log in

Analysing signalling networks by mass spectrometry

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Sequence analysis of the human genome and the association of genetic aberrations with diseases have provided a rough framework whereby the impact of individual genotypes can be assessed. To fully understand the effect of individual and co-occurring genetic aberrations, as well as their individual and collected contribution to the development of diseases, it is critical to analyse the matching proteome and to determine how the organisation, expression level and function of protein networks are affected. Sensitive mass spectrometric platforms in combination with innovative workflows allow qualitative and quantitative analyses of the cellular as well as the extracellular proteome. Importantly, in addition to specifically identifying the content of the proteome, several aspects of the proteomic organisation can be analysed including protein complexes, protein modifications, enzymatic activities and subcellular/organelle localisation. Together, these measurements will provide novel insight into the biological effect of disease-causing mutations ultimately coupling genotype and phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akimov V, Rigbolt KTG, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol Biosyst 7(12):3223–3233

    Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karin-Schmids O, Williams R, Chait B, Sali A, Rout MP (2007a) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Article  PubMed  CAS  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karin-Schmids O, Williams R, Chait B, Rout MP, Sali A (2007b) Determining the architectures of macromolecular assemblies. Nature 450:683–694

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Krise U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25(9):1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donocan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana J (2005) High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307(5715):1621–1625

    Article  PubMed  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterisation of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101(33):12130–12135

    Article  PubMed  CAS  Google Scholar 

  • Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organisation of the human autophagy system. Nature 466:68–76

    Article  PubMed  CAS  Google Scholar 

  • Beltrao P, Trinidad JC, Fiedler D, Roguev A, Lim WA, Shokat KM, Burlingame AL, Krogan NJ (2009) Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol 7(6):e1000134

    Article  PubMed  CAS  Google Scholar 

  • Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Dynamics of Cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143:951–965

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen MV, Larsen DH, Bunkenborg J, Bartek J, Lukas J, Andersen (2010) JS Site-Specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9(6):1314–1323

  • Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schulz PG, Rose MD, Wood JL, Morgan DO, Shokat KM (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407(6802):395–401

    Article  PubMed  CAS  Google Scholar 

  • Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, Pawson T (2011) Selected reaction monitoring mass spectrometry reveals the dynamics of signalling through the GRB2 adaptor. Nat Biotechnol 29(7):653–658

    Article  PubMed  CAS  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318

    Article  PubMed  CAS  Google Scholar 

  • Blagoev B, Ong SE, Kratchmarova I, Mann M (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237

    Article  PubMed  CAS  Google Scholar 

  • Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Lam H, Vitek O, Brusniak MY, Roschitski B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3(153):rs4

    Article  PubMed  CAS  Google Scholar 

  • Bonaldi T, Straub T, Cox J, Kumar C, Becker PB, Mann M (2008) Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. Mol Cell 31:762–772

    Article  PubMed  CAS  Google Scholar 

  • Breikreutz A, Choi H, Sharom J, Boucher L, Neduva V, Larsen B, Lin Z, Breitkreutz B, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii A, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046

    Article  CAS  Google Scholar 

  • Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM (2011) Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal 4(196):rs11

    Article  PubMed  CAS  Google Scholar 

  • Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt D (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104(7):2193–2198

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Lee HS, Park ZY (2008) Detection of multiphosphorylated peptides in LC–MS/MS analysis under low pH conditions. Anal Chem 80(8):3007–3015

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walter TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  PubMed  CAS  Google Scholar 

  • Cutillas PR, Khwaja A, Graupera M, Pearce W, Gharbi S, Waterfield M, Vanhaesenbroeck B (2006) Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry. Proc Natl Acad Sci USA 103(24):8959–8964

    Article  PubMed  CAS  Google Scholar 

  • Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10(3):M110.003590

    Google Scholar 

  • Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M (2008) Kinase selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31(3):438–448

    Article  PubMed  CAS  Google Scholar 

  • de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frolich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767

    Article  PubMed  CAS  Google Scholar 

  • Domanski D, Murphy LC, Borchers CH (2010) Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signalling pathways. Anal Chem 82(13):5610–5620

    Article  PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28(7):710–721

    Article  PubMed  CAS  Google Scholar 

  • Dong MQ, Venable JD, Au N, Xu T, Park SK, Cociorva D, Johnson JR, Dillin A, Yates JR (2007) Quantitative mass spectrometry identifies insulin signaling targets in C. elegans. Science 317(5838):660–663

    Article  PubMed  CAS  Google Scholar 

  • Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  PubMed  CAS  Google Scholar 

  • Fedorov O, Marsden B, Pogacic V, Rellos P, Muller S, Bullock AN, Schwaller J, Sundstrom M, Knapp S (2007) A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104(51):20523–20528

    Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt D, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    Article  PubMed  CAS  Google Scholar 

  • Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, Hu Y, Binari R, Hong P, Sun X, Porto M, Pacifico S, Murali T, Finley RL, Asara JM, Berger B, Perrimon N (2011) Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 4(196):rs10

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    Article  PubMed  CAS  Google Scholar 

  • Geiger T, Cox J, Mann M (2010) Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet 6(9). pii: e1001090

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945

    Google Scholar 

  • Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654

    Article  PubMed  CAS  Google Scholar 

  • Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 9(12):2642–2653

    Google Scholar 

  • Guo A, Villen J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeil J, Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb ML (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci USA 105(2):692–697

    Article  PubMed  CAS  Google Scholar 

  • Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, Vijayraghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147(3):690–703

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Helibut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Mathiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran M, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    Article  PubMed  CAS  Google Scholar 

  • Holt LJ, Tuch B, Villen J, Johnson A, Gygi S, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insight into evolution. Science 325(5948):1682–1686

    Article  PubMed  CAS  Google Scholar 

  • Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Petersen TR, Choi Y, Gray NS, Yaffe MB, Marto JA, Sabatini DM (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTRRC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signalling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104(31):12867–12872

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcome virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189

    Article  PubMed  CAS  Google Scholar 

  • Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403

    Article  PubMed  CAS  Google Scholar 

  • Jin LL, Tong J, Prekash A, Peterman SM, St-Germain JR, Taylot P, Trudel S, Moran MF (2010) Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res 9(5):2752–2761

    Article  PubMed  CAS  Google Scholar 

  • Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ (2009) Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom 20(12):2211–2220

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson D, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326(5959):1502–1509

    Article  PubMed  CAS  Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Google Scholar 

  • Koch A, Krug K, Pengelley S, Macek B, Hauf S (2011) Mitotic substrates of the kinase Aurora with roles in chromatin regulation identified through quantitative phosphoproteomics in fission yeast. Sci Signal 4(179):rs6

    Article  PubMed  CAS  Google Scholar 

  • Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanisms of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308(5727):1472–1477

    Article  PubMed  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134(2):353–364

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Anjum R, Yu Y, Kunz RC, Andersen JN, Kraus M, Keilhack H, Nagashima K, Krauss S, Paweletz C, Hendrickson RC, Feldman AS, Wu CL, Rush J, Villen J, Gygi SP (2009) Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 27(10):933–940

    Article  PubMed  CAS  Google Scholar 

  • Kuhner S, van Noort V, Betts MJ, Leo-Marcis A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez V, Chen WH, Devon D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bottcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC (2009) Proteome organisation in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics, a tutorial. Mol Syst Biol 4(222):1–14

    Google Scholar 

  • Levy ED, Landry CR, Michnick SW (2010) Cell signaling. Signaling through cooperation. Science 328(5981):983–984

    Google Scholar 

  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Lopez MF, Rezai T, Sarracino DA, Prakash A, Krastins B, Athanas M, Singh RJ, Barnidge DR, Oran P, Borges C, Nelson RW (2010) Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem 56(2):281–290

    Article  PubMed  CAS  Google Scholar 

  • Lopez MF, Kuppusamy R, Sarrachino DA, Prakash A, Athanas M, Krastins B, Rezai T, Sutton JN, Peterman S, Nicolaides K (2011) Mass spectrometric discovery and selective reaction monitoring (SRM) of putative protein biomarker candidates in first trimester Trisomy 21 maternal serum. J Proteome Res 10(1):133–142

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Schmids A, Guell M, Kuhner S, Gavin AC, Aebersold R, Serrano L (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7(511):1–12

    Google Scholar 

  • Malovannaya A, Lanz RB, Jung SY, Bulynko Y, Le NT, Chan DW, Ding C, Shi Y, Yucer N, Krenciute G, Kim BJ, Li C, Wang Y, O’Malley B, Qin J (2011) Analysis of the human endogenous coregulator complexome. Cell 145(5):787–799

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Balif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2

    Article  PubMed  CAS  Google Scholar 

  • Mok J, Kim PM, Lam HY, Piccirllo S, Zhou X, Jescheke GR, Sheridan DL, Parker SA, Desai V, Jwa M, Cameroni E, Niu H, Good M, Remenyi A, Ma JL, Shey YJ, Sassi HE, Sopko R, Chan CS, De Virgilio C, Hollingsworth NM, Lim WA, Stern DF, Stillman B, Andrews BJ, Gerstein MB, Snyder M, Turk BE (2010) Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci Signal 3(109):ra12

    Article  PubMed  CAS  Google Scholar 

  • Moritz A, Li Y, Guo A, Villen J, Wang Y, MacNeill J, Kornhauser J, Sprott K, Zhou J, Possemato A, Ren J, Hornbeck P, Cantley LC, Gygi SP, Rush J, Comb MJ (2010) Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 3(136):ra64

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96(12):6591–6596

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signalling networks. Cell 127(3):635–648

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Vermeulen M, Santamaaria A, Mumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristiansen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labelling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  • Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8(7):1751–1764

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF (2000) Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci USA 97(1):179–184

    Article  PubMed  CAS  Google Scholar 

  • Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M, Weissig H, Aban A, Chun D, Tanner S, Kozarich JW (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46(2):350–358

    Article  PubMed  CAS  Google Scholar 

  • Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D, Zhang J, Jagannathan S, Aban A, Okerberg E, Herring C, Nordin B, Weissig H, Yang Q, Lee JD, Gray NS, Kozarich JW (2011) In situ kinase profiling reveals functionally relevant properties of native kinases. Chem Biol 18(6):699–710

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  PubMed  CAS  Google Scholar 

  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806

    Article  PubMed  CAS  Google Scholar 

  • Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–46

    Article  PubMed  CAS  Google Scholar 

  • Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation of femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium dioxide precolumns. Anal Chem 76(14):3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Ross MM, Zhang H, Tian Y, Kulasingam V, Drabovich AP, Smith C, Batruch I, Liotta L, Petricoin E, Diamandis EP, Chan DW, Lopez MF (2010) Platform for establishing interlaboratory reproducibility of selected reaction monitoring-based mass spectrometry peptide assays. J Proteome Res 9(12):6678–6688

    Article  PubMed  CAS  Google Scholar 

  • Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskall SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protocols 1(2):1029–1043

    Article  CAS  Google Scholar 

  • Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, Kassem M, Blagoev B (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 8(5):959–970

    Article  PubMed  CAS  Google Scholar 

  • Rechavi O, Kalman M, Fang Y, Vernitsky H, Jacob-Hirsch J, Foster LJ, Kloog Y, Goldstein I (2010) Trans-SILAC: sorting out the non-cell autonomous proteome. Nat Methods 7(11):923–927

    Article  PubMed  CAS  Google Scholar 

  • Rifai N, Gillette M, Carr SA (2006) Protein Biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983

    Article  PubMed  CAS  Google Scholar 

  • Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneil J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identified oncogenic kinases in lung cancer. Cell 131(6):1190–1203

    Article  PubMed  CAS  Google Scholar 

  • Rubbi L, Titz B, Brown L, Galvan E, Komisopoulou E, Chen SS, Low T, Tahmasian M, Skaggs B, Müschen M, Pellegrini M, Graeber TG (2011) Global phosphoproteomics reveals crosstalk between Bcr-Abl and negative feedback mechanisms controlling Src signaling. Sci Signal 4(166):ra18

    Article  PubMed  CAS  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B (2008) An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 7(11):2138–2150

    Article  PubMed  CAS  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  CAS  Google Scholar 

  • Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326(5957):1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  PubMed  CAS  Google Scholar 

  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403

    Article  PubMed  CAS  Google Scholar 

  • Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711

    Google Scholar 

  • Steen H, Jebanathirajah JA, Springer M, Kirschner MW (2005) Stable isotope-free relative quantification of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci 102(11):3948–3953

    Article  PubMed  CAS  Google Scholar 

  • Steen JA, Steen H, Georgi A, Parker K, Springer M, Kirchner M, Hamprecht F, Kirschner MW (2008) Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomics analysis. Proc Natl Acad Sci USA 105(16):6069–6074

    Article  PubMed  CAS  Google Scholar 

  • Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA, Gygi SP, Livingstone M, Zhang H, Polakiewics RD, Comb MJ (2007) Profiling of UV-induced ATM/ATR signalling pathways. Proc Natl Acad Sci USA 104(50):19855–19860

    Article  PubMed  CAS  Google Scholar 

  • Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9(10):2173–2183

    Article  PubMed  CAS  Google Scholar 

  • Tan CS, Bodenmiller B, Pasculescu A, Jovanovic M, Hengartner MO, Jorgensen C, Bader GD, Aebersold R, Pawson T, Linding R (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2(81):ra39

    Article  PubMed  Google Scholar 

  • Tao WA, Wollscheid B, O’Brien R, Eng JK, Li XJ, Bodenmiller B, Watt JD, Hood L, Aebersold R (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2(8):591–598

    Article  PubMed  CAS  Google Scholar 

  • Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (2008) An in vivo map of the yeast protein interactome. Science 320(5882):1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

    PubMed  CAS  Google Scholar 

  • Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5(2):214–226

    Article  PubMed  CAS  Google Scholar 

  • Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protocols 3(10):1630–1638

    Article  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111.013284

    Google Scholar 

  • Walhout AJM, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. Elegans using proteins involved in vulval development. Science 287(5450):116–122

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, Kopelovich L, Maitra A, Matthaei H, Eshleman JR, Hruban RH, Kinzler KW, Pandey A, Vogelstein B (2011) Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci USA 108(6):2444–2449

    Article  PubMed  CAS  Google Scholar 

  • Wepf A, Glatter T, Schmids A, Aebersold R, Gstaiger M (2009) Quantitative interaction proteomics using mass spectrometry. Nat Methods 6(3):203–205

    Article  PubMed  CAS  Google Scholar 

  • Witze W, Old M, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    Article  PubMed  CAS  Google Scholar 

  • Wolf-Yadlin A, Hautaneimi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signalling networks. Proc Natl Acad Sci USA 104(14):5860–5865

    Article  PubMed  CAS  Google Scholar 

  • Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP (2011a) Correct interpretation of comprehensive phosphorylation dynamics requires normalisation by protein expression changes. Mol Cell Proteomics 10(8):M111.009654

    Google Scholar 

  • Wu R, Haas W, Dephoure N, Huttlin E, Zhai B, Sowa ME, Gygi S (2011b) A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods 8(8):677–683

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by remnant immunoaffinity profiling. Nat Biotechnol 28(8):868–873

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Anjum R, Kubota K, Rush J, Villen J, Gygi SP (2009) A site-specific, multiplexed kinase activity assay using stable-isotope dilution and high-resolution mass spectrometry. Proc Natl Acad Sci USA 106(28):11606–11611

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, Blenis J (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signalling. Science 332(6035):1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4(9):1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Ye J, Jensen ON, Roepstorff P (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6(11):2032–2042

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank members of the cell communication team for valuable input and discussions. The research in the cell communication team is generously supported by BBSRC and CR-UK career establishment award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, C., Locard-Paulet, M. Analysing signalling networks by mass spectrometry. Amino Acids 43, 1061–1074 (2012). https://doi.org/10.1007/s00726-012-1293-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1293-z

Keywords

Navigation