Skip to main content

Advertisement

Log in

Quantitative proteomics to decipher ubiquitin signaling

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Ubiquitin signaling plays an essential role in controlling cellular processes in eukaryotes, and the impairment of ubiquitin regulation contributes to the pathogenesis of a wide range of human diseases. During the last decade, mass spectrometry-based proteomics has emerged as an indispensable approach for identifying the ubiquitinated proteome (ubiquitinome), ubiquitin modification sites, the linkages of complex ubiquitin chains, as well as the interactome of ubiquitin enzymes. In particular, implementation of quantitative strategies allows the detection of dynamic changes in the ubiquitinome, enhancing the ability to differentiate between function-relevant protein targets and false positives arising from biological and experimental variations. The profiling of total cell lysate and the ubiquitinated proteome in the same sets of samples has become a powerful tool, revealing a subset of substrates that are modulated by specific physiological and pathological conditions, such as gene mutations in ubiquitin signaling. This strategy is equally useful for dissecting the pathways of ubiquitin-like proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akimov V, Rigbolt KT, Nielsen MM, Blagoev B (2011) Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics. Mol BioSyst 7:3223–3233

    Article  PubMed  CAS  Google Scholar 

  • Bandopadhyay R, de Belleroche J (2010) Pathogenesis of Parkinson’s disease: emerging role of molecular chaperones. Trends Mol Med 16:27–36

    Article  PubMed  CAS  Google Scholar 

  • Bedford L, Layfield R, Mayer RJ, Peng J, Xu P (2011) Diverse polyubiquitin chains accumulate following 26S proteasomal dysfunction in mammalian neurones. Neurosci Lett 491:44–47

    Article  PubMed  CAS  Google Scholar 

  • Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86

    Article  PubMed  CAS  Google Scholar 

  • Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    Article  PubMed  CAS  Google Scholar 

  • Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  PubMed  CAS  Google Scholar 

  • Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430–437

    Article  PubMed  CAS  Google Scholar 

  • Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR et al (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25:160–165

    Article  PubMed  CAS  Google Scholar 

  • Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–578

    Article  PubMed  CAS  Google Scholar 

  • Boname JM, Thomas M, Stagg HR, Xu P, Peng J, Lehner PJ (2010) Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 11:210–220

    Article  PubMed  CAS  Google Scholar 

  • Bremm A, Freund SM, Komander D (2010) Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 17:939–947

    Article  PubMed  CAS  Google Scholar 

  • Burande CF, Heuze ML, Lamsoul I, Monsarrat B, Uttenweiler-Joseph S, Lutz PG (2009) A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation. Mol Cell Proteomics 8:1719–1727

    Article  PubMed  CAS  Google Scholar 

  • Cadwell K, Coscoy L (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127–130

    Article  PubMed  CAS  Google Scholar 

  • Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583

    Article  PubMed  CAS  Google Scholar 

  • Choe EA, Liao L, Zhou JY, Cheng D, Duong DM, Jin P, Tsai LH, Peng J (2007) Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J Neurosci 27:9503–9512

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Ben-Saadon R (2004) N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol 14:103–106

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  PubMed  CAS  Google Scholar 

  • Ciehanover A, Hod Y, Hershko A (1978) A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 81:1100–1105

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI et al (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 286:10457–10465

    Article  PubMed  CAS  Google Scholar 

  • Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, and Nielsen ML (2011). Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10, M110 003590

  • Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80:2921–2931

    Article  PubMed  CAS  Google Scholar 

  • de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1254

    Article  PubMed  CAS  Google Scholar 

  • Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215

    Article  PubMed  CAS  Google Scholar 

  • Denis NJ, Vasilescu J, Lambert JP, Smith JC, Figeys D (2007) Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics 7:868–874

    Article  PubMed  CAS  Google Scholar 

  • Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10:659–671

    Article  PubMed  CAS  Google Scholar 

  • Ducoux-Petit M, Uttenweiler-Joseph S, Brichory F, Bousquet-Dubouch MP, Burlet-Schiltz O, Haeuw JF, Monsarrat B (2008) Scaled-down purification protocol to access proteomic analysis of 20S proteasome from human tissue samples: comparison of normal and tumor colorectal cells. J Proteome Res 7:2852–2859

    Article  PubMed  CAS  Google Scholar 

  • Eng J, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin–protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (1984) Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55

    Article  PubMed  CAS  Google Scholar 

  • Franco M, Seyfried NT, Brand AH, Peng J, and Mayor U (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10, M110 002188

    Google Scholar 

  • Friedman JS, Ray JW, Waseem N, Johnson K, Brooks MJ, Hugosson T, Breuer D, Branham KE, Krauth DS, Bowne SJ et al (2009) Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet 84:792–800

    Article  PubMed  CAS  Google Scholar 

  • Garciaa BA, Siutib N, Thomasb CE, Mizzena CA, Kelleher NL (2007) Characterization of neurohistone variants and post-translational modifications by electron capture dissociation mass spectrometry. Int J Mass Spectr 259:184–196

    Article  CAS  Google Scholar 

  • Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35:12–17

    Article  PubMed  CAS  Google Scholar 

  • Goldknopf IL, Busch H (1977) Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 74:864–868

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA 72:11–15

    Article  PubMed  CAS  Google Scholar 

  • Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M (2010) A protein interaction network for ECM29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 285:31616–31633

    Article  PubMed  CAS  Google Scholar 

  • Goto E, Yamanaka Y, Ishikawa A, Aoki-Kawasumi M, Mito-Yoshida M, Ohmura-Hoshino M, Matsuki Y, Kajikawa M, Hirano H, Ishido S (2010) Contribution of K11-linked ubiquitination to MIR2-mediated MHC class I internalization. J Biol Chem 285:35311–35319

    Article  PubMed  CAS  Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627

    Article  PubMed  CAS  Google Scholar 

  • Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105:13333–13338

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Hjerpe R, Rodriguez MS (2008) Efficient approaches for characterizing ubiquitinated proteins. Biochem Soc Trans 36:823–827

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2000) Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol 2:E153–E157

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  • Hor S, Ziv T, Admon A, Lehner PJ (2009) Stable isotope labeling by amino acids in cell culture and differential plasma membrane proteome quantitation identify new substrates for the MARCH9 transmembrane E3 ligase. Mol Cell Proteomics 8:1959–1971

    Article  PubMed  CAS  Google Scholar 

  • Hough R, Pratt G, Rechsteiner M (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J Biol Chem 262:8303–8313

    PubMed  CAS  Google Scholar 

  • Huang H, Jeon MS, Liao L, Yang C, Elly C, Yates JR 3rd, Liu YC (2010) K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33:60–70

    Article  PubMed  CAS  Google Scholar 

  • Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189

    Article  PubMed  CAS  Google Scholar 

  • Jeon HB, Choi ES, Yoon JH, Hwang JH, Chang JW, Lee EK, Choi HW, Park ZY, Yoo YJ (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357:731–736

    Article  PubMed  CAS  Google Scholar 

  • Jeram SM, Srikumar T, Pedrioli PG, Raught B (2009) Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 9:922–934

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873

    Article  PubMed  CAS  Google Scholar 

  • Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, Schulman H, Kopito RR (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8:691–696

    Article  PubMed  CAS  Google Scholar 

  • Kao A, Chiu CL, Vellucci D, Yang Y, Patel VR, Guan S, Randall A, Baldi P, Rychnovsky SD, and Huang L (2011) Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics 10, M110.002212

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340

    Article  PubMed  CAS  Google Scholar 

  • Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25:4877–4887

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7:750–757

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, Finley D, King RW, Gygi SP (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat Cell Biol 8:700–710

    Article  PubMed  CAS  Google Scholar 

  • Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    Article  PubMed  CAS  Google Scholar 

  • Kouranti I, McLean JR, Feoktistova A, Liang P, Johnson AE, Roberts-Galbraith RH, Gould KL (2010) A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol 8:e1000471

    Article  PubMed  CAS  Google Scholar 

  • Layfield R, Tooth D, Landon M, Dawson S, Mayer J, Alban A (2001) Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1:773–777

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17:86–92

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Lee BH, Hanna J, King RW, and Finley D (2010) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10, R110.003871

  • Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR (2011) Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 286:41530–41538

    Article  PubMed  CAS  Google Scholar 

  • Li Y (2010) Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem 55:73–83

    Article  PubMed  CAS  Google Scholar 

  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3:e1487

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  PubMed  CAS  Google Scholar 

  • Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R, Elortza F, and Rodriguez MS (2011) Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J proteomics 2011 Dec 10. [Epub ahead of print]

  • Maor R, Jones A, Nuhse TS, Studholme DJ, Peck SC, Shirasu K (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6:601–610

    Article  PubMed  CAS  Google Scholar 

  • Marotti LA Jr, Newitt R, Wang Y, Aebersold R, Dohlman HG (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41:5067–5074

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5:4145–4151

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D, Phu L, Kirkpatrick DS, Hymowitz SG, Rape M et al (2010) K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39:477–484

    Article  PubMed  CAS  Google Scholar 

  • Mayor T, Lipford JR, Graumann J, Smith GT, Deshaies RJ (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol Cell Proteomics 4:741–751

    Article  PubMed  CAS  Google Scholar 

  • Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 6:1885–1895

    Article  PubMed  CAS  Google Scholar 

  • Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    Article  PubMed  CAS  Google Scholar 

  • Motoyama A, Yates JR 3rd (2008) Multidimensional LC separations in shotgun proteomics. Anal Chem 80:7187–7193

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  PubMed  CAS  Google Scholar 

  • Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, Shifrin N, Petri MA, Kamboh MI, Manzi S et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40:1062–1064

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj N, Kulak NA, Cox J, Neuhaus N, Mayr K, Hoerning O, Vorm O, and Mann M (2011a) Systems-wide perturbation analysis with near complete coverage of the yeast proteome by single-shot UHPLC runs on a bench-top Orbitrap. Mol Cell Proteomics 2011 Oct 20. [Epub ahead of print]

  • Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M (2011b) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548

    Article  PubMed  Google Scholar 

  • Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, O’Donnell L, Kumakubo A, Munro M, Sicheri F et al (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941–946

    Article  PubMed  CAS  Google Scholar 

  • Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678

    Article  PubMed  CAS  Google Scholar 

  • Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460

    Article  PubMed  CAS  Google Scholar 

  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M et al (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769

    Article  PubMed  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  • Peng J (2008) Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep 41:177–183

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Gygi SP (2001) Proteomics: the move to mixtures. J Mass Spectrom 36:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Phu L, Izrael-Tomasevic A, Matsumoto ML, Bustos DJ, Dynek JN, Fedorova AV, Bakalarski CE, Arnott D, Deshayes K, Dixit VM et al (2010) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics 10, M110.003756

  • Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  PubMed  CAS  Google Scholar 

  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  PubMed  CAS  Google Scholar 

  • Radulovic D, Jelveh S, Ryu S, Hamilton TG, Foss E, Mao Y, Emili A (2004) Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 3:984–997

    Article  PubMed  CAS  Google Scholar 

  • Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D et al (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    Article  PubMed  CAS  Google Scholar 

  • Righetti PG (2006) Real and imaginary artefacts in proteome analysis via two-dimensional maps. J Chromatogr B Analyt Technol Biomed Life Sci 841:14–22

    Article  PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger DH, Goldstein G (1975) Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 255:42304

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger DH, Goldstein G, Niall HD (1975) The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14:2214–2218

    Article  PubMed  CAS  Google Scholar 

  • Semple CA (2003) The comparative proteomics of ubiquitination in mouse. Genome Res 13:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Seyfried NT, Xu P, Duong DM, Cheng D, Hanfelt J, Peng J (2008) Systematic approach for validating the ubiquitinated proteome. Anal Chem 80:4161–4169

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Chan DW, Jung SY, Malovannaya A, Wang Y, and Qin J (2011a) A data set of human endogenous protein ubiquitination sites. Mol Cell Proteomics 10, M110 002089

  • Shi Y, Xu P, and Qin J (2011b) Ubiquitinated proteome: Ready for global? Mol Cell Proteomics 10, R110.006882

  • Song M, Hakala K, Weintraub ST, Shiio Y (2011) Quantitative proteomic identification of the BRCA1 ubiquitination substrates. J Proteome Res 10:5191–5198

    Article  PubMed  CAS  Google Scholar 

  • Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403

    Article  PubMed  CAS  Google Scholar 

  • Starita LM, Lo RS, Eng JK, von Haller PD, and Fields S (2011) Sites of ubiquitin attachment in Saccharomyces cerevisiae. Proteomics 2011 Nov 22 [Epub ahead of print]

  • Steen H, Mann M (2004) The abc’s (and xyz’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711

    Article  PubMed  CAS  Google Scholar 

  • Tai HC, Besche H, Goldberg AL, and Schuman EM (2010). Characterization of the Brain 26S Proteasome and its Interacting Proteins. Front Mol Neurosci 3

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  PubMed  CAS  Google Scholar 

  • Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of Lys63-linked di-ubiqutin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279:7055–7063

    Article  PubMed  CAS  Google Scholar 

  • Vasilescu J, Smith JC, Ethier M, Figeys D (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4:2192–2200

    Article  PubMed  CAS  Google Scholar 

  • Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW (2010) Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol 6:750–757

    Article  PubMed  CAS  Google Scholar 

  • Voorhees PM, Orlowski RZ (2006) The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46:189–213

    Article  PubMed  CAS  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, and Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111 013284

  • Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8:735–748

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Cheng D, Peng J, Pickart CM (2006) Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J 25:1710–1719

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Guerrero C, Kaiser P, Huang L (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 4:649–665

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Hurov K, Hofmann K, Elledge SJ (2009) NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23:729–739

    Article  PubMed  CAS  Google Scholar 

  • Warren MR, Parker CE, Mocanu V, Klapper D, Borchers CH (2005) Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid Commun Mass Spectrom 19:429–437

    Article  PubMed  CAS  Google Scholar 

  • Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216

    Article  PubMed  CAS  Google Scholar 

  • Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD, Urban MK, Haas AL (1980) Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255:7529–7532

    PubMed  CAS  Google Scholar 

  • Wu SL, Kim J, Bandle RW, Liotta L, Petricoin E, Karger BL (2006) Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol Cell Proteomics 5:1610–1627

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, Eshleman JR, Goggins MG, Wolfgang CL, Canto MI et al (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA 108:21188–21193

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Peng J (2008) Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal Chem 80:3438–3444

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Cheng D, Duong DM, Rush J, Roelofs J, Finley D, Peng J (2006) A proteomic strategy for quantifying polyubiquitin chain topologies. Israel J Chem 46:171–182

    Article  CAS  Google Scholar 

  • Xu M, Skaug B, Zeng W, Chen ZJ (2009a) A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 36:302–314

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Duong DM, Peng J (2009b) Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 8:3944–3950

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009c) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873

    Article  PubMed  CAS  Google Scholar 

  • Xun Z, Kaufman TC, Clemmer DE (2009) Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J Proteome Res 8:4500–4510

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Attygalle AB (2007) LC/MS characterization of undesired products formed during iodoacetamide derivatization of sulfhydryl groups of peptides. J Mass Spectrom 42:233–243

    Article  PubMed  CAS  Google Scholar 

  • Yi JJ, Ehlers MD (2007) Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev 59:14–39

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res 5:2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Ulrich HD (2010) Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proc Natl Acad Sci USA 107:7704–7709

    Article  PubMed  CAS  Google Scholar 

  • Zhou JY, Afjehi-Sadat L, Asress S, Duong DM, Cudkowicz M, Glass JD, Peng J (2010) Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J Proteome Res 9:5133–5141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institutes of Health grant RR025822 and American Cancer Society grant RSG-09-181 and ALSAC (American Lebanese Syrian Associated Charities). We thank Joseph Mertz, and Drs. Zhiping Wu and Vani Shanker for critical reading and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PC., Na, C.H. & Peng, J. Quantitative proteomics to decipher ubiquitin signaling. Amino Acids 43, 1049–1060 (2012). https://doi.org/10.1007/s00726-012-1286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1286-y

Keywords

Navigation