Skip to main content
Log in

Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Hyperglycemia-induced oxidative stress plays a vital role in the progression of diabetic nephropathy. The renoprotective nature of taurine has also been reported earlier; but little is known about the mechanism of this beneficial action. The present study has, therefore, been carried out to explore in detail the mechanism of the renoprotective effect of taurine under diabetic conditions. Diabetes was induced in rats by alloxan (single i.p. dose of 120 mg/kg body weight) administration. Taurine was administered orally for 3 weeks (1% w/v in drinking water) either from the day on which alloxan was injected or after the onset of diabetes. Alloxan-induced diabetic rats showed a significant increase in plasma glucose, enhanced the levels of renal damage markers, plasma creatinine, urea nitrogen and urinary albumin. Diabetic renal injury was associated with increased kidney weight to body weight ratio and glomerular hypertrophy. Moreover, it increased the productions of reactive oxygen species, enhanced lipid peroxidation and protein carbonylation in association with decreased intracellular antioxidant defense in the kidney tissue. In addition, hyperglycemia enhanced the levels of proinflammatory cytokins (TNF-α, IL-6, IL-1β) and Na+–K+-ATPase activity with a concomitant reduction in NO content and eNOS expression in diabetic kidney. Investigation of the oxidative stress-responsive signaling cascades showed the upregulation of PKCα, PKCβ, PKCε and MAPkinases in the renal tissue of the diabetic animals. However, taurine administration decreased the elevated blood glucose and proinflammatory cytokine levels, reduced renal oxidative stress (via decrease in xanthine oxidase activity, AGEs formation and inhibition of p47phox/CYP2E1 pathways), improved renal function and protected renal tissue from alloxan-induced apoptosis via the regulation of Bcl-2 family and caspase-9/3 proteins. Taurine supplementation in regular diet could, therefore, be beneficial to regulate diabetes-associated renal complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALX:

Alloxan

CAT:

Catalase

DAB:

3,3′-Diaminobenzidine tetrahydrochloride

FACS:

Fluorescence activated cell sorting

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S-transferase

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

IL-6:

Interleukin-6

MDA:

Malonaldehyde

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAU:

Taurine

TNF-α:

Tumor necrosis factor alpha

References

  • Aerts L, Van Assche FA (2002) Taurine and taurine-deficiency in the perinatal period. J Perinat Med 30:281–286

    Article  PubMed  CAS  Google Scholar 

  • Akhileshwar V, Patel SP, Katyare SS (2007) Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: a comparative study. Indian J Clin Biochem 22:84–90

    Article  CAS  Google Scholar 

  • Barr CC (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy, by the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med 342:381–389

    Article  Google Scholar 

  • Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carneiroa EM, Latorracab MQ, Araujoc E, Beltrad M, Oliverase MJ, Navarro M, Berna G, Bedoya FJ, Vellosoc LA, Soria B, Martin F (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20:503–511

    Article  Google Scholar 

  • Chandra D, Jackson EB, Ramana KV, Kelley R, Srivastava SK, Bhatnagar A (2002) Nitric oxide prevents aldose reductase activation and sorbitol accumulation during diabetes. Diabetes 51:3095–3101

    Article  PubMed  CAS  Google Scholar 

  • Chang KJ, Kwon W (2000) Immunohistochemical localization of insulin in pancreatic beta-cells of taurine-supplemented or taurine-depleted diabetic rats. Adv Exp Med Biol 483:579–587

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Xu J, Yu F, Zhao J, Tang X, Tang CS (2004) Taurine protected myocardial mitochondria injury induced by hyperhomocysteinemia in rats. Amino Acids 27:37–48

    Article  PubMed  CAS  Google Scholar 

  • Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C (1998) Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol 159:341–348

    Article  PubMed  CAS  Google Scholar 

  • Colivicchi MA, Raimondi L, Bianchi L, Tipton KF, Pirisino R, Della Corte L (2004) Taurine prevents streptozotocin impairment of hormone-stimulated glucose uptake in rat adipocytes. Eur J Pharmacol 495:209–215

    Article  PubMed  CAS  Google Scholar 

  • Das UN (2001) Nutritional factors in the pathobiology of human essential hypertension. Nutrition 17:337–346

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2008) Taurine provides antioxidant defense against NaF-induced cytotoxicity in murine hepatocytes. Pathophysiology 15:181–190

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sinha M, Sil PC (2009) Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187:201–210

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010a) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCδ-JNK pathway. PLoS ONE 5:e12602

    Article  PubMed  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010b) Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res 44:340–355

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2010c) Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology 269:24–34

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2011a) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2011.11.009

  • Das J, Ghosh J, Manna P, Sil PC (2011b) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81:891–909

    Article  PubMed  CAS  Google Scholar 

  • Das J, Ghosh J, Manna P, Sil PC (2011c) Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids. doi:10.1007/s00726-011-0904-4

    Google Scholar 

  • Ferreira MPLVO, Nunes MV, Mendes E, Remiilo F, Ferreirat IMA (1997) Development of an HPLC-UV method for determination of taurine in infant formulae and breast milk. J Liq Chromgr Relat Technol 20:1269–1278

    Article  CAS  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  PubMed  CAS  Google Scholar 

  • Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61:1115–1119

    PubMed  CAS  Google Scholar 

  • Franconi F, Miceli M, Fazzini A, Seghieri G, Caputo S, DiLeo MA, Lepore D, Ghirlanda G (1996) Taurine and diabetes. Humans and experimental models. Adv Exp Med Biol 403:579–582

    PubMed  CAS  Google Scholar 

  • Franconi F, Loizzo A, Ghirlanda G (2006) Taurine supplementation and diabetes mellitus. Curr Opin Clin Nutr Metab Care 9:32e36

    Article  Google Scholar 

  • Gavrovskaya LK, Ryzhova OV, Safonova AF, Matveev AK, Sapronov NS (2008) Protective effect of taurine on rats with experimental insulin-dependent diabetes mellitus. Bull Exp Biol Med 146:226–228

    Article  PubMed  CAS  Google Scholar 

  • Ghosh J, Das J, Manna P, Sil PC (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappaB, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240:73–87

    Article  PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  • Hansen SH (2001) The role of taurine diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346

    Article  PubMed  CAS  Google Scholar 

  • Harris DC (2001) Tubulointerstitial renal disease. Curr Opin Nephrol Hypertens 10:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Kawasaki H, Abe K, Kanno M (1991) Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 261:H1086–H1094

    PubMed  CAS  Google Scholar 

  • Higo S, Miyata S, Jiang QY, Kitazawa R, Kitazawa S, Kasuga M (2008) Taurine administration after appearance of proteinuria retards progression of diabetic nephropathy in rats. Kobe J Med Sci 54:E35–E45

    PubMed  Google Scholar 

  • Hiramatsu K, Arimori S (1980) Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 29:251–256

    Google Scholar 

  • Ibrahim HN, Hostetter TH (1997) Diabetic nephropathy. J Am Soc Nephrol 8:487–493

    PubMed  CAS  Google Scholar 

  • Kaplan B, Karabay G, Zagyapan RD, Ozer C, Sayan H, Duyar I (2004) Effect of taurine in glucose and taurine administration. Amino Acids 27:327–333

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Lee AJ, You S, Park T, Lee DH (2006) Characterization of taurine as inhibitor of sodium glucose transporter. Adv Exp Med Biol 583:137–145

    Article  PubMed  CAS  Google Scholar 

  • Kontny E, Szczepanska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J et al (2000) The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum 43:2169–2177

    Article  PubMed  CAS  Google Scholar 

  • Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838

    Article  PubMed  CAS  Google Scholar 

  • Laight DW, Kaw AV, Carrier MJ, Anggard EE (1998) Interaction between superoxide anion and nitric oxide in the regulation of vascular endothelial function. Br J Pharmacol 124:238–244

    Article  PubMed  CAS  Google Scholar 

  • Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:S241–S245

    Article  PubMed  CAS  Google Scholar 

  • Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:E29–E36

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2008a) Amelioration of cadmium-induced cardiac impairment by taurine. Chem Biol Interact 174:88–97

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2008b) Taurine triggers a chemoprevention against cadmium induced testicular oxidative injury. Reprod Toxicol 26:282–291

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2009a) Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades. Chem Biol Interact 181:297–308

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Sinha M, Sil PC (2009b) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36:417–428

    Article  PubMed  CAS  Google Scholar 

  • Maturo J, Kulakowski EC (1988) Taurine binding to the purified insulin receptor. Biochem Pharmacol 37:3755–3760

    Article  PubMed  CAS  Google Scholar 

  • Mohan IK, Das UN (1997) Oxidant stress, anti-oxidants and nitric oxide in non-insulin dependent diabetes mellitus. Med Sci Res 25:55–57

    CAS  Google Scholar 

  • Nandhini TA, Anuradha CV (2003) Inhibition of lipid peroxidation, protein glycation and elevation of membrane ion pump activity by taurine in RBC exposed to high glucose. Clin Chim Acta 336:129–135

    Article  PubMed  CAS  Google Scholar 

  • Nandhini AT, Thirunavukkarasu V, Anuradha CV (2004) Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine. Acta Physiol Scand 181:297–303

    Article  PubMed  CAS  Google Scholar 

  • Obrosova IG, Minchenko AG, Marinescu V, Fathallah L, Kennedy A, Stockert CM, Frank RN, Stevens MJ (2001) Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia 44:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Onozato ML, Tojo A, Goto A, Fujita T, Wilcox CS (2002) Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int 61:186–194

    Article  PubMed  CAS  Google Scholar 

  • Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812:719–731

    Article  PubMed  CAS  Google Scholar 

  • Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA (2004) Perinatal l-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44:83–88

    Article  PubMed  CAS  Google Scholar 

  • Raza H, Prabu SK, Robin MA, Avadhani NG (2004) Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 53:185–194

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Sil PC (2012) Taurine protects murine hepatocytes against oxidative stress-induced apoptosis by tert-butyl hydroperoxide via PI3K/Akt and mitochondrial-dependent pathways. Food Chem 131:1086–1096

    Article  CAS  Google Scholar 

  • Roy A, Manna P, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-kappaB and mitochondria dependent pathways. Free Radic Res 43:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Schaffer J, Azuma J, Mozaffari M (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol 87:91–99

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MR, Moorthy K, Taha A, Hussain ME, Za Baquer N (2006) Low doses of vanadate and Trigonella synergistically regulate Na+/K+-ATPase activity and GLUT4 translocation in alloxan-diabetic rats. Mol Cell Biochem 285:17–27

    Article  PubMed  CAS  Google Scholar 

  • Sinha M, Manna P, Sil PC (2007) Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro 21:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008a) Taurine protects antioxidant defense system in the erythrocytes of cadmium treated mice. BMB Rep 41:657–663

    Article  PubMed  CAS  Google Scholar 

  • Sinha M, Manna P, Sil PC (2008b) Cadmium induced neurological disorders: prophylactic role of taurine. J Appl Toxicol 28:974–986

    PubMed  CAS  Google Scholar 

  • Sinha M, Manna P, Sil PC (2009) Induction of necrosis in cadmium-induced hepatic oxidative stress and its prevention by the prophylactic properties of taurine. J Trace Elem Med Biol 23:300–313

    Article  PubMed  CAS  Google Scholar 

  • Suresh Y, Das UN (2006) Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 74:199–213

    Article  PubMed  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  • Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224

    Article  PubMed  CAS  Google Scholar 

  • Toba H, Sawai N, Morishita M, Murata S, Yoshida M, Nakashima K, Morita Y, Kobara M, Nakata T (2009) Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat. Eur J Pharmacol 612:106–114

    Article  PubMed  CAS  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH et al (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Physiol 269:429–438

    Google Scholar 

  • Verma L, Singour PK, Chaurasiya PK, Rajak H, Pawar RS, Patil UK (2010) Effect of ethanolic extract of Cassia occidentalis Linn. for the management of alloxan-induced diabetic rats. Pharmacognosy Res 2:132–137

    Article  PubMed  Google Scholar 

  • Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91:261–270

    Article  PubMed  CAS  Google Scholar 

  • Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  PubMed  CAS  Google Scholar 

  • Wu N, Lu Y, He B, Zhang Y, Lin J, Zhao S, Zhang W, Li Y, Han P (2010) Taurine prevents free fatty acid-induced hepatic insulin resistance in association with inhibiting JNK1 activation and improving insulin signaling in vivo. Diabetes Res Clin Pract 90:288–296

    Article  PubMed  CAS  Google Scholar 

  • Yan HD, Li XZ, Xie JM, Li M (2007) Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Chin Med J 120:787–793

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Prasanta Pal for excellent technical assistance for the study.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, J., Sil, P.C. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids 43, 1509–1523 (2012). https://doi.org/10.1007/s00726-012-1225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1225-y

Keywords

Navigation