Skip to main content

Advertisement

Log in

Tissue-specific responses to loss of transglutaminase 2

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Of the eight catalytic transglutaminases (TGs), transglutaminase 2 (TG2) has been the most comprehensively studied due to its ubiquitous expression in multiple cell types. Despite the observed critical role for this enzyme in multiple biological processes in vitro, TG2 knockout mouse models have shown no severe developmental phenotypes, suggesting compensation by other TGs. To begin characterization of the compensating mechanisms, we analyzed total transamidating activity and expression patterns of all catalytically active TGs in seven different tissues/organs from wild-type and TG2 knockout mice. Inhibitory analysis with TG2-specific inhibitor KCC-009 suggests that relative contribution of TG2 in total transamidating activity differs in various tissues. Accordingly, our data indicate tissue-specific mechanisms of compensation for the loss of TG2, including transcriptional compensation in heart and liver versus functional compensation in aorta, kidney and skeletal/cartiagenous tissues. On the contrary, no compensation has been detected in skeletal muscle, suggesting a limited role for the TG2-mediated transamidation in normal development of this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TG:

Transglutaminase

FXIIIa:

Factor XIIIa

TG1-7:

Transglutaminase 1–7

WT:

Wild type

TG−/− :

Transglutaminase 2 null

References

  • Aeschlimann D, Wetterwald A, Fleisch H, Paulsson M (1993) Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol 120:1461–1470. doi:10.1083/jcb.120.6.1461

    Article  PubMed  CAS  Google Scholar 

  • Akimov SS, Krylov D, Fleischmann LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838. doi:10.1083/jcb.148.4.825

    Article  PubMed  CAS  Google Scholar 

  • Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers–Danlos syndrome, muscular dystrophy and corneal diseases. Glycobiology 12(9):107R–1167R. doi:10.1093/glycob/cwf065

    Article  PubMed  CAS  Google Scholar 

  • Bakker EN, Pistea A, Spaan JA, Rolf T, de Vries CJ, van Rooijen N, Candi E, VanBavel E (2006) Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible compensation by macrophage-derived factor XIII. Circ Res 99:86–92. doi:10.1161/01.RES.0000229657.83816.a7

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Golenhofen N, Weth A, Hiiragi T, Saint R, Griffin M, Drenckhahn D (2004) Role of transglutaminase 1 in stabilisation of intercellular junctions of the vascular endothelium. Histochem Cell Biol 122:17–25. doi:10.1007/s00418-004-0668-y

    Article  PubMed  CAS  Google Scholar 

  • Candi E, Oddi S, Paradisi A, Terrinoni A, Ranalli M, Teofoli P, Citro G, Scarpato S, Puddu P, Melino G (2002) Expression of transglutaminase 5 in normal and pathologic human epidermis. J Invest Dermatol 119:670–677. doi:10.1046/j.1523-1747.2002.01853.x

    Article  PubMed  CAS  Google Scholar 

  • Candi E, Paradisi A, Terrinoni A, Pietroni V, Oddi S, Cadot B, Jogini V, Meiyappan M, Clardy J, Finazzi-Agro A, Melino G (2004) Transglutaminase 5 is regulated by guanine–adenine nucleotides. Biochem J 381:313–319. doi:10.1042/BJ20031474

    Article  PubMed  CAS  Google Scholar 

  • Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12:469–475. doi:10.1016/j.chembiol.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  • Dardik R, Leor J, Skutelsky E, Castel D, Holbova R, Schiby G, Shaish A, Dickneite G, Loscalzo J, Inbal A (2006) Evaluation of the pro-angiogenic effect of factor XIII in heterotopic mouse heart allografts and FXIII-deficient mice. Thromb Haemost 95:546–550. doi:10.1160/TH05-06-0409

    PubMed  CAS  Google Scholar 

  • De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21:148–155. doi:10.1128/MCB.21.1.148-155.2001

    Article  PubMed  Google Scholar 

  • Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297–3302. doi:10.1016/j.febslet.2005.03.063

    Article  PubMed  Google Scholar 

  • Fisher M, Jones RA, Huang L, Haylor JL, El Nahas M, Griffin M, Johnson TS (2009) Modulation of tissue transglutaminase in tubular epithelial cells alters extracellular matrix levels: a potential mechanism of tissue scarring. Matrix Biol 28:20–31. doi:10.1152/physrev.00044.2008

    Article  PubMed  CAS  Google Scholar 

  • Greenberg C, Birckbichler PJ, Rice RH (1991) Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. J FASEB 5:3071–3077

    CAS  Google Scholar 

  • Grenard P, Bates MK, Aeschilmann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. J Biol Chem 276(35):33066–33078. doi:10.1074/jbc.M10255320

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396. doi:10.1042/BJ20021234

    Article  PubMed  CAS  Google Scholar 

  • Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64(3):332–343. doi:10.1002/ana.21450

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803. doi:10.1042/BJ20021084

    Article  PubMed  CAS  Google Scholar 

  • Hiiragi T, Sasaki H, Nagafuchi A, Sabe H, Shen SC, Matsuki M, Yamanishi K, Tsukita S (1999) Transglutaminase type I and its crosslinking activity are concentrated at adherens junctions in simple epithelial cells. J Biol Chem 274:34148–34154. doi:10.1074/jbc.274.48.34148

    Article  PubMed  CAS  Google Scholar 

  • Ho KC, Quarmby VE, French FS, Wilson EM (1992) Molecular cloning of rat prostate transglutaminase complementary DNA. The major androgen-regulated protein DP1 of rat dorsal prostate and coagulating gland. J Biol Chem 267(18):12660–12667

    PubMed  CAS  Google Scholar 

  • Hwang KC, Gray CD, Sweet WE, Moravec CS, Im MJ (1996) Adrenergic receptor coupling with Gh in the failing human heart. Circulation 94:718–726. doi:10.1161/01.CIR.94.4.718

    Article  PubMed  CAS  Google Scholar 

  • Iismaa SE, Chung L, Wu MJ, Teller DC, Yee VC, Graham RM (1997) The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Biochemistry 36:11655–11664. doi:10.1021/bi970545e

    Article  PubMed  CAS  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89:991–1023. doi:10.1152/physrev.00044.2008

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Polewski M, erkeltaub RA (2008) Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ Res 102:529–537. doi:10.1161/CIRCRESAHA.107.154260

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto N, Takizawa T, Matsuki M, Morioka H, Robinson JM, Yamanishi K (2002) Development of ichthyosiform skin compensates for defective permeability barrier function in mice lacking transglutaminase 1. J Clin Invest 109:243–250. doi:10.1172/JCI0213563

    PubMed  CAS  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Natl Rev Mol Cell Biol 4:140–156. doi:10.1038/nrm1014

    Article  CAS  Google Scholar 

  • Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279(23):23863–23868. doi:10.1074/jbc.M311919200

    Article  PubMed  CAS  Google Scholar 

  • Nadalutti C, Viiri KM, Kaukinen K, Maki M, Lindfors K (2011) Extracellular transglutamianse 2 has a role in cell adhesion, whereas intracellular transglutaminase is involved in regulation of endothelial cell proliferation and apoptosis. Cell Prolif 44(1):49–58. doi:10.1111/j.1365-2184.2010.00716.x

    Article  PubMed  CAS  Google Scholar 

  • Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276:20673–20678. doi:10.1074/jbc.M010846200

    Article  PubMed  CAS  Google Scholar 

  • Nurminskaya M, Kaartinen MT (2006) Transglutaminases in mineralized tissues. Front Biosci 11:1591–1606. doi:10.2741/1907

    Article  PubMed  CAS  Google Scholar 

  • Nurminskaya M, Linsenmayer TF (1996) Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev Dynam 206:260–271. doi:10.1002/(SICI)1097-0177(199607)206:3<260:AID-AJA4>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Nurminskaya M, Magee C, Nurminsky D, Linsenmayer TF (1998) Plasma transglutaminase in hypertophic chondrocytes: expression and cell-specific intracellular activation produce cell death and externalization. J Cell Biol 142:1135–1144. doi:10.1083/jcb.142.4.1135

    Article  PubMed  CAS  Google Scholar 

  • Nurminsky D, Shanmugasundaram S, Deasey S, Michaud C, Allen S, Hendig D, Dastjerdi A, Francis-West P, Nurminskaya M (2011) Transglutaminase 2 regulates early chondrogenesis and glycosaminoglycan synthesis. Mech Dev 128:234–245. doi:10.1016/j.mod.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  • Pistea A, Bakker ENTP, Spaan JAE, Hardeman MR, van Rooijen N, VanBavel E (2008) Small artery remodeling and erythrocyte deformability in L-NAME-induced hypertension: role of transglutaminases. J Vasc Res 45:10–18. doi:10.1159/000109073

    Article  PubMed  CAS  Google Scholar 

  • Small K, Feng JF, Lorenz J, Donnelly ET, Yu A, Im MJ, Dorn GW 2nd, Liggett SB (1999) Cardiac specific overexpression of transglutaminase II (Gh) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 274:21292–21296. doi:10.1074/jbc.274.30.21291

    Article  Google Scholar 

  • Spina AM, Esposito C, Pagano M, Chiosi E, Mariniello L, Cozzolino A, Porta R, Illiano G (1999) GTPase and transglutaminase are associated in the secretion of the rat anterior prostate. Biochem Biophys Res Commun 260(2):351–356. doi:10.1006/bbrc.1999.0914

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Yokosaki Y, Higashikawa F, Saito Y, Eboshida A, Ochi M (2007) The integrin α5β1 regulates chondrocyte hypertrophic differentiation induced by GTP-bound transglutaminase 2. Matrix Biol 26:409–418. doi:10.1016/j.matbio.2007.04.005

    Article  PubMed  CAS  Google Scholar 

  • Thomazy V, Fesus L (1989) Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 255:215–224

    Article  PubMed  CAS  Google Scholar 

  • Trigwell SM, Lynch PT, Griffin M, Hargreaves AJ, Bonner PLR (2004) An improved colorimetric assay for the measurement of transglutaminase (Type II)-ε-(γ-Glutamyl) lysine cross-linking activity. Anal Biochem 330(1):164–166. doi:10.1016/j.ab.2004.03.068

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Begum S, Hearn JD, Hynes RO (2006) GPCR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci 103:9023–9028. doi:10.1073/pnas.0602681103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Chaitan Khosla for providing us with the TG inhibitor KCC-009 and Dr. Robert Graham for providing us with TG2−/− mice. This work was supported by NIH grants R01R01HL093305, R56DK071920 and R03AR057126 and a grant from Maryland Stem Cell Research Fund to M. Nurminskaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Nurminskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deasey, S., Shanmugasundaram, S. & Nurminskaya, M. Tissue-specific responses to loss of transglutaminase 2. Amino Acids 44, 179–187 (2013). https://doi.org/10.1007/s00726-011-1183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1183-9

Keywords

Navigation