Amino Acids

, Volume 43, Issue 1, pp 153–163 | Cite as

Carnosine derivatives: new multifunctional drug-like molecules

  • Francesco Bellia
  • Graziella VecchioEmail author
  • Enrico Rizzarelli
Minireview Article


Carnosine (β-alanyl-l-histidine) is an endogenous dipeptide widely and abundantly distributed in the muscle and nervous tissues of several animal species. Many functions have been proposed for this compound because of its antioxidant and metal ion-chelator properties. Many potential therapeutic properties have been recognized especially related to the antioxidant activity, but the therapeutic uses are strongly limited by the mechanism governing its homeostasis. This fact has been the main reason for developing the synthesis of carnosine derivatives with interesting potentiality, but until now there have been very few applications. These derivatives could represent the future drugs for many pathologies related to oxidative stress and metal ion dyshomeostasis.


Carnosine Dipeptide Derivatisation Carnosinase 



We thank all the co-workers, whose names are listed in the references for their contribution to this research. We thank MIUR [2008R23Z7 K, PRIN 2008F5A3AF_005, FIRB2011_RBAP114AMK and RBNE08HWLZ (Merit)] for financial support.

Conflict of interest

The authors declare no conflict of interest.


  1. Agarwal RP, Perrin DD (1975) Stability constants of complexes of copper(II) ions with some histidine peptides. J Chem Soc, Dalton Trans:268–272Google Scholar
  2. Aldini G, Facino RM, Beretta G, Carini M (2005) Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. Biofactors 24:77–87PubMedCrossRefGoogle Scholar
  3. Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M (2007) Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev 27:817–868PubMedCrossRefGoogle Scholar
  4. Almkvist J, Karlsson A (2004) Galectins as inflammatory mediators. Glycoconj J 19:575–581PubMedCrossRefGoogle Scholar
  5. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr (2010) Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc 42:1162–1173PubMedGoogle Scholar
  6. Asperger A, Renner C, Menzel M, Gebhardt R, Meixensberger J, Gaunitz F (2011) Identification of factors involved in the anti-tumor activity of carnosine on glioblastomas using a proteomics approach. Cancer Investig 29:272–281CrossRefGoogle Scholar
  7. Babizhayev MA, Yegorov YE (2010) Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-l-histidine), carcinine (beta-alanylhistamine) and l-carnosine (beta-alanyl-l-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic. Recent Pat Drug Deliv Formul 4:198–230PubMedCrossRefGoogle Scholar
  8. Babizhayev MA, Nikolayev GM, Nikolayeva JG, Yegorov YE (2011) A survey and analysis of the role of molecular chaperone proteins and imidazole-containing dipeptide-based compounds as molecular escorts into the skin during stress, injury, water structuring and other types of cutaneous pathophysiology. Inter J Cosmet Sci 33:1–16CrossRefGoogle Scholar
  9. Bai FP, Subramaniam P, Mosberg HI, Amidon GL (1991) Structural requirement for the intestinal mucosal-cell peptide transporter: the need for N-terminal alpha-amino group. Pharm Res 8:593–599PubMedCrossRefGoogle Scholar
  10. Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65:789–797Google Scholar
  11. Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228PubMedCrossRefGoogle Scholar
  12. Bellia F, Amorini AM, La Mendola D, Vecchio G, Tavazzi B, Giardina B, Di Pietro V, Lazzarino G, Rizzarelli E (2008) New glycosidic derivatives of histidine-containing dipeptides with antioxidant properties and resistant to carnosinase activity. Eur J Med Chem 43:373–380PubMedCrossRefGoogle Scholar
  13. Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspect Med. doi: 10.1016/j.mam.2011.10.009
  14. Bertinaria M, Rolando B, Giorgis M, Montanaro G, Guglielmo S, Buonsanti MF, Carabelli V, Gavello D, Daniele PG, Fruttero R, Gasco A (2011) Synthesis, physicochemical characterization, and biological activities of new carnosine derivatives stable in human serum as potential neuroprotective agents. J Med Chem 54:611–621PubMedCrossRefGoogle Scholar
  15. Boldyrev AA (1993) Does carnosine possess direct antioxidant activity? Inter J Biochem 25:1101–1107CrossRefGoogle Scholar
  16. Bonomo RP, Bruno V, Conte E, De Guidi G, La Mendola D, Maccarrone G, Nicoletti F, Rizzarelli E, Sortino S, Vecchio G (2003) Potentiometric, spectroscopic and antioxidant activity studies of SOD mimics containing carnosine. Dalton Trans:4406–4415Google Scholar
  17. Brookes G, Pettit LD (1975) Thermodynamics of formation of complexes of copper(II) and nickel(II) ions with glycylhistidine, β-alanylhistidine, and histidylglycine. J Chem Soc, Dalton Trans :2112–2117Google Scholar
  18. Brown CE, Antholine WE (1979) Chelation chemistry of carnosine. Evidence that mixed complexes may occur in vivo. J Phys Chem 83:3314–3319CrossRefGoogle Scholar
  19. Cacciatore I, Cocco A, Costa M, Fontana M, Lucente G, Pecci L, Pinnen F (2005) Biochemical properties of new synthetic carnosine analogues containing the residue of 2, 3-diaminopropionic acid: the effect of N-acetylation. Amino Acids 28:77–83PubMedCrossRefGoogle Scholar
  20. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775PubMedCrossRefGoogle Scholar
  21. Calabrese V, Cornelius C, Stella AM, Calabrese EJ (2010) Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem Res 35:1880–1915PubMedCrossRefGoogle Scholar
  22. Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E, Sensi SL (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One 6. doi: 10.1038/onc.2011.322
  23. Cuzzocrea S, Genovese T, Failla M, Vecchio G, Fruciano M, Mazzon E, Di Paola R, Muia C, La Rosa C, Crimi N, Rizzarelli E, Vancheri C (2007) Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 292:L1095–L1104PubMedCrossRefGoogle Scholar
  24. D’Agata R, Grasso G, Iacono G, Spoto G, Vecchio G (2006) Lectin recognition of a new SOD mimic bioconjugate studied with surface plasmon resonance imaging. Org Biomol Chem 4:610–612PubMedCrossRefGoogle Scholar
  25. Daniele PG, Amico P, Ostacoli G (1982) Heterobinuclear Cu(II)l-carnosine complexes with Cd(II) or Zn(II) in aqueous solution. Inorg Chim Acta 66:65–70CrossRefGoogle Scholar
  26. Daniele PG, Prenesti E, Zelano V, Ostacoli G (1993) Chemical relevance of the copper(II) l-carnosine system in aqueous solution—a thermodynamic and spectrophotometric study. Spectrochim Acta, Part A 49:1299–1306CrossRefGoogle Scholar
  27. Decker EA, Livisay SA, Zhou S (2000) A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc) 65:766–770Google Scholar
  28. Derave W, Everaert I, Beeckman S, Baguet A (2010) Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 40:247–263PubMedCrossRefGoogle Scholar
  29. Di Paola R, Impellizzeri D, Salinaro AT, Mazzon E, Bellia F, Cavallaro M, Cornelius C, Vecchio G, Calabrese V, Rizzarelli E, Cuzzocrea S (2011) Administration of carnosine in the treatment of acute spinal cord injury. Biochem Pharmacol. doi: 10.1016/j.bcp.2011.07.074
  30. Dobrota D, Fedorova T, Stvolinsky S, Babusikova E, Likavcanova K, Drgova A, Strapkova A, Boldyrev A (2005) Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect. Neurochem Res 30:1283–1288PubMedCrossRefGoogle Scholar
  31. Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E (2010) Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem 285:9346–9356PubMedCrossRefGoogle Scholar
  32. Elgavish S, Shaanan B (1997) Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem Sci 22:462–467PubMedCrossRefGoogle Scholar
  33. Ferrari CK (2004) Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology 5:275–289PubMedCrossRefGoogle Scholar
  34. Fouad AA, El-Rehany MA, Maghraby HK (2007) The hepatoprotective effect of carnosine against ischemia/reperfusion liver injury in rats. Eur J Pharmacol 572:61–68PubMedCrossRefGoogle Scholar
  35. Fu Q, Dai H, Hu W, Fan Y, Shen Y, Zhang W, Chen Z (2008) Carnosine protects against Abeta42-induced neurotoxicity in differentiated rat PC12 cells. Cell Mol Neurobiol 28:307–316PubMedCrossRefGoogle Scholar
  36. Gabius HJ (1997) Animal lectins. Eur J Biochem 243:543–576PubMedCrossRefGoogle Scholar
  37. Gallant S, Kukley M, Stvolinsky S, Bulygina E, Boldyrev A (2000) Effect of carnosine on rats under experimental brain ischemia. Tohoku J Exp Med 191:85–99PubMedCrossRefGoogle Scholar
  38. Grasso GI, Arena G, Bellia F, Maccarrone G, Parrinello M, Pietropaolo A, Vecchio G, Rizzarelli E (2011a) Intramolecular weak interactions in the thermodynamic stereoselectivity of copper(II) complexes with carnosine-trehalose conjugates. Chemistry 17:9448–9455PubMedCrossRefGoogle Scholar
  39. Grasso GI, Bellia F, Arena G, Vecchio G, Rizzarelli E (2011b) Noncovalent interaction-driven stereoselectivity of copper(II) complexes with cyclodextrin derivatives of l- and d-carnosine. Inorg Chem 50:4917–4924PubMedCrossRefGoogle Scholar
  40. Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315PubMedCrossRefGoogle Scholar
  41. Guney Y, Turkcu UO, Hicsonmez A, Andrieu MN, Guney HZ, Bilgihan A, Kurtman C (2006) Carnosine may reduce lung injury caused by radiation therapy. Med Hypotheses 66:957–959PubMedCrossRefGoogle Scholar
  42. Hashida M, Hirabayashi H, Nishikawa M, Takakura Y (1997) Targeted delivery of drugs and proteins to the liver via receptor-mediated endocytosis. J Control Release 46:129–137CrossRefGoogle Scholar
  43. Hashida M, Akamatsu K, Nishikawa M, Yamashita F, Takakura Y (1999) Design of polymeric prodrugs of prostaglandin E(1) having galactose residue for hepatocyte targeting. J Control Release 62:253–262PubMedCrossRefGoogle Scholar
  44. Hipkiss AR (1998) Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol 30:863–868PubMedCrossRefGoogle Scholar
  45. Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154PubMedCrossRefGoogle Scholar
  46. Jackson MC, Kucera CM, Lenney JF (1991) Purification and properties of human serum carnosinase. Clin Chim Acta 196:193–205PubMedCrossRefGoogle Scholar
  47. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87PubMedCrossRefGoogle Scholar
  48. Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC (2002) Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol Cells 13:498–502PubMedGoogle Scholar
  49. Katayama S, Nishizawa K, Hirano M, Yamamura S, Momose Y (2000) Effect of polaprezinc on healing of acetic acid-induced stomatitis in hamsters. J Pharm Pharm Sci 3:114–117PubMedGoogle Scholar
  50. Kliment CR, Oury TD (2010) Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 49:707–717PubMedCrossRefGoogle Scholar
  51. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179PubMedCrossRefGoogle Scholar
  52. La Mendola D, Rizzarelli E, Vecchio G, University of Catania (2002a) Carnosine derivatives, a process for the preparation thereof and pharmaceutical compositions containing them. EP1176154Google Scholar
  53. La Mendola D, Sortino S, Vecchio G, Rizzarelli E (2002b) Synthesis of new carnosine derivatives of b-cyclodextrin and their hydroxyl radical scavenger ability. Helv Chim Acta 85:1633–1643CrossRefGoogle Scholar
  54. Lanza V, Bellia F, D’Agata R, Grasso G, Rizzarelli E, Vecchio G (2011) New glycoside derivatives of carnosine and analogs resistant to carnosinase hydrolysis: synthesis and characterization of their copper(II) complexes. J Inorg Biochem 105:181–188PubMedCrossRefGoogle Scholar
  55. Lenney JF, Peppers SC, Kucera-Orallo CM, George RP (1985) Characterization of human tissue carnosinase. Biochem J 228:653–660PubMedGoogle Scholar
  56. Matsukura T, Tanaka H (2000) Applicability of zinc complex of l-carnosine for medical use. Biochemistry (Mosc) 65:817–823Google Scholar
  57. Mineo P, Vitalini D, La Mendola D, Rizzarelli E, Scamporrino E, Vecchio G (2002) Electrospray mass spectrometric studies of l-carnosine (β-alanyl-l-histidine) complexes with copper(II) or zinc ions in aqueous solution. Rapid Commun Mass Spectrom 16:722–729PubMedCrossRefGoogle Scholar
  58. Mineo P, Vitalini D, La Mendola D, Rizzarelli E, Scamporrino E, Vecchio G (2004) Coordination features of difunctionalized b-cyclodextrins with carnosine: ESI-MS and spectroscopic investigations on 6A, 6D-di(b-alanyl-l-histidine)-6A, 6D-dideoxy-b-cyclodextrin and 6A, 6C-di(b-alanyl-l-histidine)-6A, 6C-dideoxy-b-cyclodextrin and their copper(II) complexes. J Inorg Biochem 98:254–265PubMedCrossRefGoogle Scholar
  59. Negrisoli G, Canevotti R, Previstali M (2009) Dipeptide compounds containing d-histidine. US2009306165Google Scholar
  60. Nicoletti VG, Santoro AM, Grasso G, Vagliasindi LI, Giuffrida ML, Cuppari C, Purrello VS, Stella AM, Rizzarelli E (2007) Carnosine interaction with nitric oxide and astroglial cell protection. J Neurosci Res 85:2239–2245PubMedCrossRefGoogle Scholar
  61. Nielsen CU, Supuran CT, Scozzafava A, Frokjaer S, Steffansen B, Brodin B (2002) Transport characteristics of l-carnosine and the anticancer derivative 4-toluenesulfonylureido-carnosine in a human epithelial cell line. Pharm Res 19:1337–1344PubMedCrossRefGoogle Scholar
  62. Nishikawa M, Hirabayashi H, Takakura Y, Hashida M (1995) Design for cell-specific targeting of proteins utilizing sugar-recognition mechanism: effect of molecular weight of proteins on targeting efficiency. Pharm Res 12:209–214PubMedCrossRefGoogle Scholar
  63. Orioli M, Vistoli G, Regazzoni L, Pedretti A, Lapolla A, Rossoni G, Canevotti R, Gamberoni L, Previtali M, Carini M, Aldini G (2011) Design, synthesis, ADME properties, and pharmacological activities of beta-alanyl-d-histidine (d-carnosine) prodrugs with improved bioavailability. ChemMedChem 6:1269–1282PubMedCrossRefGoogle Scholar
  64. Otani H, Okumura N, Hashida-Okumura A, Nagai K (2005) Identification and characterization of a mouse dipeptidase that hydrolyzes l-carnosine. J Biochem (Tokyo) 137:167–175CrossRefGoogle Scholar
  65. Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN (1998) Toxic effects of beta-amyloid(25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci Lett 242:105–108PubMedCrossRefGoogle Scholar
  66. Rizzarelli E, Vecchio G, Lazzarino A, Amorini AM, Bellia F, University of Catania (2007) Trehalose conjugate with carnosine having antioxidant activity, stable to enzymatic hydrolysis, procedure for its preparation, and pharmaceutical, cosmetic and nutraceutical compositions that contain it. EP1860116Google Scholar
  67. Saada MC, Montero JL, Vullo D, Scozzafava A, Winum JY, Supuran CT (2011) Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms. J Med Chem 54:1170–1177PubMedCrossRefGoogle Scholar
  68. Sale C, Saunders B, Harris RC (2010) Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39:321–333PubMedCrossRefGoogle Scholar
  69. Shytle RD, Ehrhart J, Tan J, Vila J, Cole M, Sanberg CD, Sanberg PR, Bickford PC (2007) Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds. Rejuvenation Res 10:173–178PubMedCrossRefGoogle Scholar
  70. Sigel H, Martin RP (1982) Coordination properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82:385–426CrossRefGoogle Scholar
  71. Sozio P, Iannitelli A, Cerasa LS, Cacciatore I, Cornacchia C, Giorgioni G, Ricciutelli M, Nasuti C, Cantalamessa F, Di Stefano A (2008) New l-dopa codrugs as potential antiparkinson agents. Arch Pharm (Weinheim) 341:412–417CrossRefGoogle Scholar
  72. Stvolinsky S, Antipin M, Meguro K, Sato T, Abe H, Boldyrev A (2010a) Effect of carnosine and its trolox-modified derivatives on life span of drosophila melanogaster. Rejuvenation Res 13:453–457PubMedCrossRefGoogle Scholar
  73. Stvolinsky SL, Bulygina ER, Fedorova TN, Meguro K, Sato T, Tyulina OV, Abe H, Boldyrev AA (2010b) Biological activity of novel synthetic derivatives of carnosine. Cell Mol Neurobiol 30:395–404PubMedCrossRefGoogle Scholar
  74. Supuran CT, Briganti F, Tilli S, Chegwidden WR, Scozzafava A (2001) Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg Med Chem 9:703–714PubMedCrossRefGoogle Scholar
  75. Teufel M, Saudek V, Ledig J-P, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531PubMedCrossRefGoogle Scholar
  76. Trombley PQ, Horning MS, Blakemore LJ (2000) Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection. Biochemistry (Mosc) 65:807–816Google Scholar
  77. Unno H, Yamashita T, Ujita S, Okumura N, Otani H, Okumura A, Nagai K, Kusunoki M (2008) Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2. J Biol Chem 3(283):27289–27299CrossRefGoogle Scholar
  78. Vistoli G, Orioli M, Pedretti A, Regazzoni L, Canevotti R, Negrisoli G, Carini M, Aldini G (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4:967–975PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Francesco Bellia
    • 1
  • Graziella Vecchio
    • 1
    Email author
  • Enrico Rizzarelli
    • 1
  1. 1.Department of Chemical SciencesUniversity of CataniaCataniaItaly

Personalised recommendations