Skip to main content

Advertisement

Log in

Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and l-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or l-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal l-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that l-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAT:

Brown adipose tissue

EIA:

Enzyme-linked immunoassay

FUV:

Fetal umbilical vein

IUGR:

Intrauterine growth restriction

NO:

Nitric oxide

NRC:

National Research Council

WAT:

White adipose tissue

References

  • Alexander G (1978) Quantitative development of adipose tissue in foetal sheep. Aust J Biol Sci 31:489–503

    PubMed  CAS  Google Scholar 

  • Alexander GR, Kogan M, Bader D et al (2003) US birth weight/gestational age-specific neonatal mortality: 1995–1997 rates for whites, hispanics, and blacks. Pediatrics 111:e61–e66

    Article  PubMed  Google Scholar 

  • Asakura H (2004) Fetal and neonatal thermoregulation. J Nippon Med Sch 71:360–370

    Article  PubMed  CAS  Google Scholar 

  • Avril I, Blondeau B, Duchene B et al (2002) Decreased beta-cell proliferation impairs the adaptation to pregnancy in rats malnourished during perinatal life. J Endocrinol 174:215–223

    Article  PubMed  CAS  Google Scholar 

  • Baschat AA (2004) Fetal responses to placental insufficiency: an update. BJOG 111:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Bird IM, Zhang L, Magness RR (2003) Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol 284:R245–R258

    PubMed  CAS  Google Scholar 

  • Bispham J, Gopalakrishnan GS, Dandrea J et al (2003) Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144:3575–3585

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R et al (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci 16:1331–1343

    Article  CAS  Google Scholar 

  • Bower S, Kingdom J, Campbell S (1998) Objective and subjective assessment of abnormal uterine artery Doppler flow velocity waveforms. Ultrasound Obstet Gynecol 12:260–264

    Article  PubMed  CAS  Google Scholar 

  • Budge H, Bispham J, Dandrea J et al (2000) Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb. Pediatr Res 47:781–786

    Article  PubMed  CAS  Google Scholar 

  • Buetow KC, Klein SW (1964) Effect of maintenance of “normal” skin temperature on survival of infants of low birth weight. Pediatrics 34:163–170

    PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Carstens GE, Gilbert CD et al (2007) Dietary supplementation of high levels of saturated and monounsaturated fatty acids to ewes during late gestation reduces thermogenesis in newborn lambs by depressing fatty acid oxidation in perirenal brown adipose tissue. J Nutr 137:43–48

    PubMed  CAS  Google Scholar 

  • Clementi E, Nisoli E (2005) Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol 142:102–110

    Article  PubMed  Google Scholar 

  • Day RL, Caliguiri L, Kamenski C et al (1964) Body temperature and survival of premature infants. Pediatrics 34:171–181

    PubMed  CAS  Google Scholar 

  • de Boo HA, van Zijl PL, Smith DE et al (2005) Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms. Pediatr Res 58:270–277

    Article  PubMed  Google Scholar 

  • Delavaud C, Bocquier F, Chilliard Y et al (2000) Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J Endocrinol 165:519–526

    Article  PubMed  CAS  Google Scholar 

  • Dietz RE, Hall JB, Whittier WD et al (2003) Effects of feeding supplemental fat to beef cows on cold tolerance in newborn calves. J Anim Sci 81:885–894

    PubMed  CAS  Google Scholar 

  • Encinias HB, Lardy GP, Encinias AM et al (2004) High linoleic acid safflower seed supplementation for gestating ewes: effects on ewe performance, lamb survival, and brown fat stores. J Anim Sci 82:3654–3661

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Geng MM, Li TJ, Kong XF et al (2011) Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:1513–1522

    Article  PubMed  CAS  Google Scholar 

  • Glossmann H, Petrischor G, Bartsch G (1999) Molecular mechanisms of the effects of sildenafil (VIAGRA). Exp Gerontol 34:305–318

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan G, Rhind SM, Stephenson T et al (2001) Effect of maternal nutrient restriction at defined periods in early to mid gestation on placento-fetal, kidney and adipose tissue weights at 110 days gestation in sheep. Early Hum Dev 63:58–59

    Google Scholar 

  • Green AS, Rozance PJ, Limesand SW (2010) Consequences of a compromised intrauterine environment on islet function. J Endocrinol 205:211–224

    Article  PubMed  CAS  Google Scholar 

  • Greenberg SS, Lancaster JR, Xie J et al (1997) Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol 273:R1031–R1045

    PubMed  CAS  Google Scholar 

  • Greenwood PL, Bell AW (2003) Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reprod Suppl 61:195–206

    PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  PubMed  CAS  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC et al (2009) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    PubMed  CAS  Google Scholar 

  • Knobel RB, Wimmer JE Jr, Holbert D (2005) Heat loss prevention for preterm infants in the delivery room. J Perinatol 25:304–308

    Article  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW et al (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Lammoglia MA, Bellows RA, Grings EE et al (1999a) Effects of prepartum supplementary fat and muscle hypertrophy genotype on cold tolerance in newborn calves. J Anim Sci 77:2227–2233

    PubMed  CAS  Google Scholar 

  • Lammoglia MA, Bellows RA, Grings EE et al (1999b) Effects of feeding beef females supplemental fat during gestation on cold tolerance in newborn calves. J Anim Sci 77:824–834

    PubMed  CAS  Google Scholar 

  • Lang U, Baker RS, Braems G et al (2003) Uterine blood flow—a determinant of fetal growth. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S55–S61

    Article  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA et al (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Li X, Rezaei R, Li P et al (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Wu X, Yin YL et al. (2011) Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids. doi:10.1007/s00726-011-0948-5

  • Mateo RD, Wu G, Bazer FW et al (2007) Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Ong SS, Tyler DJ et al (2008) Spiral artery blood volume in normal pregnancies and those compromised by pre-eclampsia. NMR Biomed 21:376–380

    Article  PubMed  Google Scholar 

  • National Research Council (NRC) (1985) Nutrient requirements of sheep. National Academy Press, Washington, DC

  • Nisoli E, Clementi E, Moncada S et al (2004a) Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol 67:1–15

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Falcone S, Tonello C et al (2004b) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Redmer DA (2001) Angiogenesis in the placenta. Biol Reprod 64:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP, Caton JS, Redmer DA et al (2006) Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 572:51–58

    PubMed  CAS  Google Scholar 

  • Samson DE, Slee J (1981) Factors affecting resistance to induced body cooling in newborn lambs of 10 breeds. Anim Prod 33:59–65

    Article  Google Scholar 

  • Satterfield MC, Bazer FW, Spencer TE (2006) Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol Reprod 75:289–296

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, Bazer FW, Spencer TE et al (2010) Sildenafil citrate treatment enhances amino acid availability in the conceptus and fetal growth in an ovine model of intrauterine growth restriction. J Nutr 140:251–258

    Article  PubMed  CAS  Google Scholar 

  • Satterfield MC, McKnight JR, Li XL et al (2011) Nutrition, epigenetics, and vascular function. In: Maulik N (ed) Nutrition epigenetic mechanisms and human disease. CRC Press, New York, pp 125–139

    Google Scholar 

  • Satterfield MC, Wu G (2011) Brown adipose tissue growth and development: significance and nutritional regulation. Front Biosci 16:1589–1608

    Article  CAS  Google Scholar 

  • Sell H, Deshaies Y, Richard D (2004) The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 36:2098–2104

    Article  PubMed  CAS  Google Scholar 

  • Simpson LL (1995) Sheep and lambs death loss. In: Washington: Livestock Section L, Dairy and Poultry Branch, Estimates Division, National Agriculture Statistics Service, USDA (ed)

  • Sladek SM, Magness RR, Conrad KP (1997) Nitric oxide and pregnancy. Am J Physiol 272:R441–R463

    PubMed  CAS  Google Scholar 

  • Symonds ME, Lomax MA (1992) Maternal and environmental influences on thermoregulation in the neonate. Proc Nutr Soc 51:165–172

    Article  PubMed  CAS  Google Scholar 

  • Thaler I, Manor D, Itskovitz J et al (1990) Changes in uterine blood flow during human pregnancy. Am J Obstet Gynecol 162:121–125

    Article  PubMed  CAS  Google Scholar 

  • Vosatka RJ, Hassoun PM, Harvey-Wilkes KB (1998) Dietary l-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol 178:242–246

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Wu ZL, Li DF et al (2011) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal. doi:10.1089/ars.2011.4381

  • Wei JW, Carroll RJ, Harden KK et al (2011) Comparisons of treatment means when factors do not interact in two-factorial studies. Amino Acids. doi:10.1007/s00726-011-0924-0

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction and health. Adv Nutr 1:31–37

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Knabe DA, Flynn NE et al (1996) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    Google Scholar 

  • Wu G, Davis PK, Flynn NE et al (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Cudd TA et al (2004) Maternal nutrition and fetal development. J Nutr 134:2169–2172

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Wallace JM et al (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P et al (2007) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Datta S et al (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC et al (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Google Scholar 

  • Xiao XM, Li LP (2005) l-arginine treatment for asymmetric fetal growth restriction. Int J Gynaecol Obstet 88:15–18

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Wang F, Fan X et al (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Kendrick LeBlanc for assistance with animal husbandry, Xilong Li, Peng Li, Reza Rezai, and Jason McKnight for technical assistance, and the members of the Laboratory for Uterine Biology and Pregnancy for assistance with tissue collection. This work was supported by National Institutes of Health 1R21 HD049449 and National Research Initiative Competitive Grants from the Animal Growth and Nutrient Utilization Program (2009-35206-05211) of the USDA National Institute of Food and Agriculture.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satterfield, M.C., Dunlap, K.A., Keisler, D.H. et al. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45, 489–499 (2013). https://doi.org/10.1007/s00726-011-1168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1168-8

Keywords

Navigation