Advertisement

Amino Acids

, Volume 43, Issue 1, pp 77–90 | Cite as

Exercise-induced oxidative stress: the effects of β-alanine supplementation in women

  • A. E. SmithEmail author
  • J. R. Stout
  • K. L. Kendall
  • D. H. Fukuda
  • J. T. Cramer
Original Article

Abstract

The purpose of this study was to evaluate the effects of β-alanine supplementation on markers of oxidative stress. Twenty-four women (age: 21.7 ± 2.1 years; VO2max: 2.6 ± 0.3 l min−1) were randomly assigned, in a double-blind fashion, to a β-alanine (BA, 2 × 800 mg tablets, 3× daily; CarnoSyn®; n = 13) or placebo (PL, 2 × 800 mg maltodextrin tablets, 3× daily; n = 11) group. A graded oxygen consumption test (VO2max) was performed to evaluate VO2max, time to exhaustion, ventilatory threshold and establish peak velocity (PV). A 40-min treadmill run was used to induce oxidative stress. Total antioxidant capacity, superoxide dismutase, 8-isoprostane (8ISO) and reduced glutathione were measured. Heart rate and ratings of perceived exertion were recorded during the 40 min run. Separate three- [4 × 2 × 2; acute (base vs. IP vs. 2 vs. 4 h) × chronic (pre- vs. post-) × treatment (BA vs. PL)] and two- [2 × 2; time (pre-supplement vs. post-supplement) × treatment (BA vs. PL)] way ANOVAs were used for analyses. There was a significant increase in VO2max (p = 0.009), independent of treatment, with no significant changes in TTE (p = 0.074) or VT (p = 0.344). Ratings of perceived exertion values were significantly improved from pre- to post-supplementation for the BA group only at 40 min (p = 0.02). The ANOVA model demonstrated no significant treatment effects on oxidative stress. The chronic effects of BA supplementation demonstrated little antioxidant potential, in women, and little influence on aerobic performance assessments.

Keywords

Carnosine Antioxidant Sex Running Aerobic capacity Supplement 

Notes

Acknowledgments

The CarnoSyn® and placebo products used in this study were graciously donated by Natural Alternatives Inc. Additional monetary support for blood analyses was donated from Vital Pharmaceuticals Inc. We would also like to acknowledge all of the scientists involved with the International Carnosine Congress, for further expanding the carnosine/β-alanine knowledge base.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry 65(7):757–765PubMedGoogle Scholar
  2. Alessio HM (1993) Exercise-induced oxidative stress. Med Sci Sports Exerc 25(2):218–224PubMedGoogle Scholar
  3. Artioli GG, Gualano B, Smith A, Stout J, Lancha AH Jr (2010) Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc 42(6):1162–1173. doi: 10.1249/MSS.0b013e3181 PubMedGoogle Scholar
  4. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W (2009) Carnosine loading and washout in human skeletal muscles. J Appl Physiol 106(3):837–842PubMedCrossRefGoogle Scholar
  5. Bate-Smith EC (1938) The buffering of muscle in rigor: protein, phosphate and carnosine. J Physiol 92:336–343Google Scholar
  6. Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1(1):50–57PubMedGoogle Scholar
  7. Bloomer RJ, Falvo MJ, Fry AC, Schilling BK, Smith WA, Moore CA (2006a) Oxidative stress response in trained men following repeated squats or sprints. Med Sci Sports Exerc 38(8):1436–1442PubMedCrossRefGoogle Scholar
  8. Bloomer RJ, Goldfarb AH, McKenzie MJ (2006b) Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc 38(6):1098–1105PubMedCrossRefGoogle Scholar
  9. Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzym Regul 30:175–194CrossRefGoogle Scholar
  10. Boldyrev AA, Dupin AM, Bunin A, Babizhaev MA, Severin SE (1987) The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem Int 15(6):1105–1113PubMedGoogle Scholar
  11. Boldyrev A, Leotsakos A, Quinn P (1992) The effect of membrane stabilizing agents on Ca-pump of the sarcoplasmic reticulum. Ukr Biokhim Zh 64(6):54–58PubMedGoogle Scholar
  12. Boldyrev AA, Stvolinsky SL, Tyulina OV, Koshelev VB, Hori N, Carpenter DO (1997) Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell Mol Neurobiol 17(2):259–271PubMedCrossRefGoogle Scholar
  13. Boldyrev A, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94(2):571–577PubMedCrossRefGoogle Scholar
  14. Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72(2 Suppl):637S–646SPubMedGoogle Scholar
  15. Cooper CE, Vollaard NB, Choueiri T, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30(2):280–285PubMedCrossRefGoogle Scholar
  16. Craan AG, Lemieux G, Vinay P, Gougoux A (1982) The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies. Kidney Int 22(2):103–111PubMedCrossRefGoogle Scholar
  17. Cullinane EM, Sady SP, Vadeboncoeur L, Burke M, Thompson PD (1986) Cardiac size and VO2max do not decrease after short-term exercise cessation. Med Sci Sports Exerc 18(4):420–424PubMedGoogle Scholar
  18. Decker EA, Crum AD, Calvert JT (1992) Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J Agric Food Chem 40:756–759CrossRefGoogle Scholar
  19. Decker EA, Ivanov V, Zhu BZ, Frei B (2001) Inhibition of low-density lipoprotein oxidation by carnosine histidine. J Agric Food Chem 49(1):511–516PubMedCrossRefGoogle Scholar
  20. Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E (2007) Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol 103(5):1736–1743PubMedCrossRefGoogle Scholar
  21. Derave W, Everaert I, Beeckman S, Baguet A (2010) Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 40(3):247–263. doi: 10.2165/11530310-000000000-00000 PubMedCrossRefGoogle Scholar
  22. Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10(1–2):125–140PubMedCrossRefGoogle Scholar
  23. Dupin AM, Stvolinskii SL (1986) Changes in carnosine levels in muscles working in different regimens of stimulation. Biokhimiia (Moscow, Russia) 51 (1):160–164Google Scholar
  24. Egorov S, Kurella EG, Boldyrev AA, Krasnovsky AA Jr (1997) Quenching of singlet molecular oxygen by carnosine and related antioxidants monitoring 1270-nm phosphorescence in aqueous media. Biochem Mol Biol Int 41(4):687–694PubMedGoogle Scholar
  25. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 10(17):1723–1740PubMedCrossRefGoogle Scholar
  26. Fatouros IG, Chatzinikolaou A, Douroudos II, Nikolaidis MG, Kyparos A, Margonis K, Michailidis Y, Vantarakis A, Taxildaris K, Katrabasas I, Mandalidis D, Kouretas D, Jamurtas AZ (2010) Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J Strength Cond Res 24(12):3278–3286. doi: 10.1519/JSC.0b013e3181b60444 PubMedCrossRefGoogle Scholar
  27. Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports medicine (Auckland, NZ) 36 (4):327–358Google Scholar
  28. Fitts RH, Holloszy JO (1976) Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol 231(2):430–433PubMedGoogle Scholar
  29. Gopal I (1997) The effect of gender on exercise-induced oxidative stress (disseration). University of North Carolina, GreensboroGoogle Scholar
  30. Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31(4):261–272PubMedCrossRefGoogle Scholar
  31. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids 30(3):279–289PubMedCrossRefGoogle Scholar
  32. Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA (2007) Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino acids 32(2):225–233PubMedCrossRefGoogle Scholar
  33. Hoffman J, Ratamess N, Faigenbaum A, Ross R, Kang J, Stout J, Wise JA (2007) Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 28(1):31–35CrossRefGoogle Scholar
  34. Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, Wise JA (2008) Beta-alanine and the hormonal response to exercise. Int J Sports Med 29(12):952–958Google Scholar
  35. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. doi: 10.1249/MSS.0b013e31818cb278 PubMedCrossRefGoogle Scholar
  36. Houmard JA, Hortobagyi T, Johns RA, Bruno NJ, Nute CC, Shinebarger MH, Welborn JW (1992) Effect of short-term training cessation on performance measures in distance runners. Int J Sports Med 13(8):572–576. doi: 10.1055/s-2007-1024567 PubMedCrossRefGoogle Scholar
  37. Howell D (2007) Statistical methods for psychology. Wadsworth, BelmontGoogle Scholar
  38. Ji LL (1999) Antioxidants and oxidative stress in exercise. In: Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 222 (3):283–292Google Scholar
  39. Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA (2008) The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids 34(4):547–554PubMedCrossRefGoogle Scholar
  40. Kendrick IP, Kim HJ, Harris RC, Kim CK, Dang VH, Lam TQ, Bui TT, Wise JA (2009) The effect of 4 weeks beta-alanine supplementation and isokinetic training on carnosine concentrations in type I and II human skeletal muscle fibres. Eur J Appl Physiol 106(1):131–138Google Scholar
  41. Kerksick C, Taylor Lt, Harvey A, Willoughby D (2008) Gender-related differences in muscle injury, oxidative stress, and apoptosis. Med Sci Sports Exerc 40(10):1772–1780PubMedCrossRefGoogle Scholar
  42. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85(9):3175–3179PubMedCrossRefGoogle Scholar
  43. Kohen R, Vellaichamy E, Hrbac J, Gati I, Tirosh O (2000) Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med 28(6):871–879 (S0891-5849(00)00191-X[pii])PubMedCrossRefGoogle Scholar
  44. Lovlin R, Cottle W, Pyke I, Kavanagh M, Belcastro AN (1987) Are indices of free radical damage related to exercise intensity. Eur J Appl Physiol 56(3):313–316CrossRefGoogle Scholar
  45. Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA (1993) Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol 75(4):1444–1451PubMedGoogle Scholar
  46. McArdle WD, Katch FI, Katch VL (2006) Exercise physiology: energy, nutrition, and human performance, 6th edn. Williams & Wilkins, LippincottGoogle Scholar
  47. Michailidis Y, Jamurtas AZ, Nikolaidis MG, Fatouros IG, Koutedakis Y, Papassotiriou I, Kouretas D (2007) Sampling time is crucial for measurement of aerobic exercise-induced oxidative stress. Med Sci Sports Exerc 39(7):1107–1113PubMedCrossRefGoogle Scholar
  48. Moller P, Wallin H, Knudsen LE (1996) Oxidative stress associated with exercise, psychological stress and life-style factors. Chem Biol Interact 102(1):17–36 (0009279796037295[pii])PubMedCrossRefGoogle Scholar
  49. Nikolaidis MG, Jamurtas AZ, Paschalis V, Fatouros IG, Koutedakis Y, Kouretas D (2008) The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med (Auckland, NZ) 38(7):579–606. (3875 [pii])Google Scholar
  50. Nohl H, Kozlov AV, Gille L, Staniek K (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31(Pt 6):1308–1311PubMedCrossRefGoogle Scholar
  51. Orr GW, Green HJ, Hughson RL, Bennett GW (1982) A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol 52(5):1349–1352PubMedGoogle Scholar
  52. Packer L (1997) Oxidants, antioxidant nutrients and the athlete. J Sports Sci 15(3):353–363PubMedCrossRefGoogle Scholar
  53. Parkhouse WS, McKenzie DC, Hochachka PW, Ovalle WK (1985) Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 58(1):14–17PubMedGoogle Scholar
  54. Peake J, Wilson G, Hordern M, Suzuki K, Yamaya K, Nosaka K, Mackinnon L, Coombes JS (2004) Changes in neutrophil surface receptor expression, degranulation, and respiratory burst activity after moderate- and high-intensity exercise. J Appl Physiol 97(2):612–618PubMedCrossRefGoogle Scholar
  55. Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13(5):379–444PubMedCrossRefGoogle Scholar
  56. Radak Z, Asano K, Inoue M, Kizaki T, Oh-Ishi S, Suzuki K, Taniguchi N, Ohno H (1995) Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol 79(1):129–135PubMedGoogle Scholar
  57. Reid MB (2001a) Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90(2):724–731PubMedCrossRefGoogle Scholar
  58. Reid MB (2001b) Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 33(3):371–376PubMedCrossRefGoogle Scholar
  59. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516PubMedCrossRefGoogle Scholar
  60. Sale C, Saunders B, Harris RC (2010) Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids 39(2):321–333. doi: 10.1007/s00726-009-0443-4 PubMedCrossRefGoogle Scholar
  61. Salim-Hanna M, Lissi E, Videla LA (1991) Free radical scavenging activity of carnosine. Free Radic Res Commun 14(4):263–270PubMedCrossRefGoogle Scholar
  62. Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283(43):29292–29300. doi: 10.1074/jbc.M801019200 PubMedCrossRefGoogle Scholar
  63. Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79(3):675–686PubMedGoogle Scholar
  64. Severin SE, Boldyrev AA (1991) Effects of carnosine, a specific component of striated muscle, on muscle and other tissues. Biomedical Sci 2(1):91–94Google Scholar
  65. Sjodin B, Hellsten Westing Y, Apple FS (1990) Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med (Auckland, NZ) 10(4):236–254Google Scholar
  66. Smith AE, Walter AA, Graef JL, Kendall KL, Moon JR, Lockwood CM, Fukuda DH, Beck TW, Cramer JT, Stout JR (2009) Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr 6:5PubMedCrossRefGoogle Scholar
  67. Soller BR, Yang Y, Lee SM, Wilson C, Hagan RD (2008) Noninvasive determination of exercise-induced hydrogen ion threshold through direct optical measurement. J Appl Physiol 104(3):837–844. doi: 10.1152/japplphysiol.00849.2007 PubMedCrossRefGoogle Scholar
  68. Stout JR, Cramer JT, Mielke M, O’Kroy J, Torok DJ, Zoeller RF (2006) Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res/Natl Strength Cond Assoc 20(4):928–931Google Scholar
  69. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O’Kroy J (2007) Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids 32(3):381–386PubMedCrossRefGoogle Scholar
  70. Van Thienen R, Van Proeyen K, Vanden Eynde B, Puype J, Lefere T, Hespel P (2009) Beta-alanine improves sprint performance in endurance cycling. Med Sci Sports Exerc 41(4):898–903PubMedCrossRefGoogle Scholar
  71. Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports medicine (Auckland, NZ) 35(12):1045–1062Google Scholar
  72. Walter AA, Smith AE, Kendall KL, Stout JR, Cramer JT (2010) Six weeks of high-intensity interval training with and without beta-alanine supplementation for improving cardiovascular fitness in women. J Strength Condition Res/Natl Strength Condition Assoc 24(5):1199–1207. doi: 10.1519/JSC.0b013e3181d82f8b Google Scholar
  73. Zoeller RF, Stout JR, O’Kroy JA, Torok DJ, Mielke M (2007) Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 33(3):505–510PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. E. Smith
    • 1
    Email author
  • J. R. Stout
    • 2
  • K. L. Kendall
    • 2
  • D. H. Fukuda
    • 2
  • J. T. Cramer
    • 3
  1. 1.Applied Physiology Laboratory, Department of Exercise and Sport ScienceUniversity of North Carolina Chapel HillChapel HillUSA
  2. 2.Metabolic and Body Composition Laboratory, Department of Health and Exercise ScienceUniversity of Oklahoma NormanOKUSA
  3. 3.Applied Musculoskeletal and Physiology Laboratory, Department of Health and Human PerformanceOklahoma State University StillwaterOKUSA

Personalised recommendations