Amino Acids

, Volume 44, Issue 1, pp 209–214 | Cite as

Transglutaminase 2 and Factor XIII catalyze distinct substrates in differentiating osteoblastic cell line: utility of highly reactive substrate peptides

  • Kazuya Watanabe
  • Kanako Tsunoda
  • Miho Itoh
  • Mina Fukui
  • Hitoshi Mori
  • Kiyotaka Hitomi
Original Article

Abstract

Differentiated osteoblastic cell line, MC3T3-E1 expresses transglutaminase 2 (TG2) and Factor XIII (FXIII). In previous studies, we identified isozyme-specific and highly reactive glutamine-donor substrate peptides (pepF11KA and pepT26) for each isozyme. Using these peptides, we compared the reaction products with lysine-donor substrates for each isozyme in differentiating MC3T3-E1 cells. By this analysis, distinct substrates for the activated TG2 and FXIII were detected in cultured cellular extract. Possible substrates that incorporated biotin-labeled peptides were further purified using streptavidin-affinity chromatography. Several isozyme-specific substrates were identified by mass spectrometry analysis of the purified fractions. These analyses also indicate the benefit of the substrate peptides for obtaining distinct substrates in a reaction mixture where two isozymes co-exist.

Keywords

Transglutaminase Osteoblast TG2 Factor XIII 

Abbreviations

Asc-P

l-ascorbic acid 2-phosphate

CBB

Coomassie Brilliant Blue

DTT

Dithiothreitol

TG2

Transglutaminase 2

FXIII

Factor XIII

References

  1. Al-Jallad HF, Nakano Y, Chen JL, McMillan E, Lefebvre C, Kaartinen MT (2006) Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures. Matrix Biol 25:135–148PubMedCrossRefGoogle Scholar
  2. Beninati S, Piacentini M (2004) The transglutaminase family: an overview. Amino Acids 26:367–372PubMedGoogle Scholar
  3. Chen JSK, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31:817–836PubMedCrossRefGoogle Scholar
  4. Esposito C, Caputo I (2005) Mammalian transglutaminases: identification of substrates as a key to physiological function and physiological relevance. FEBS J 272:615–631PubMedCrossRefGoogle Scholar
  5. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverstic functions. Trends Biochem Sci 27:534–539PubMedCrossRefGoogle Scholar
  6. Forsprecher J, Wang Z, Nelea V, Kaartinen MT (2009) Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin. Amino Acids 36:747–753PubMedCrossRefGoogle Scholar
  7. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396PubMedCrossRefGoogle Scholar
  8. Hitomi K, Kitamura M, Sugimura Y (2009a) Preferred substrate sequences for transglutaminase 2: screening using a phage-display peptide library. Amino Acids 36:619–624PubMedCrossRefGoogle Scholar
  9. Hitomi K, Kitamura M, Perez-Alea M, Ceylan I, Thomas V, El-Alaoui S (2009b) A specific colorimetric assay for measuring transglutaminase 1 and factor XIII activities. Anal Biochem 394:281–283PubMedCrossRefGoogle Scholar
  10. Itoh M, Kawamoto T, Tatsukawa H, Kojima S, Yamanishi K, Hitomi K (2011) in situ detection of active transglutaminases for keratinocyte (TGase 1) and tissue type (TGase 2) using fluorescence-labeled highly reactive substrate peptides. J Histochem Cytochem 59:180–187PubMedCrossRefGoogle Scholar
  11. Johnson KA, Rose DM, Terkeltaub RA (2008) Factor XIIIA mobilizes transglutaminases 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 121:2256–2264PubMedCrossRefGoogle Scholar
  12. Kaartinen MT, El-Maadawy S, Rasanen NH, Mckee MD (2002) Tissue transglutaminase and its substrate in bone. J Bone Miner Res 17:2161–2173PubMedCrossRefGoogle Scholar
  13. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156PubMedCrossRefGoogle Scholar
  14. Nakano Y, Al-Jallad HF, Mousa A, Kaartinen MT (2007) Expression and localization of plasma transglutaminase factor XIIIA in bone. J Histochem Cytochem 55:675–685PubMedCrossRefGoogle Scholar
  15. Nakano Y, Forsprecher J, Kaartinen MT (2010) Regulation of ATPase activity of transglutaminase 2 by MT1-MMP: implications for mineralization of MC3T3-E1 osteoblast cultures. J Cell Physiol 223:260–269PubMedGoogle Scholar
  16. Nurminskaya M, Kaartinen MT (2006) Transglutaminase in mineralized tissues. Front Biosci 11:1591–1606PubMedCrossRefGoogle Scholar
  17. Perez-Alea M, Kitamura M, Martin G, Thomas V, Hitomi K, El Alaoui S (2009) Development of an isoenzyme-specific colorimetric assay for tissue transglutaminase 2 cross-linking activity. Anal Biochem 389:150–156PubMedCrossRefGoogle Scholar
  18. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC-3T3-E1 culture; an in vitro model of osteoblast development. J Bone Miner Res 7:683–692PubMedCrossRefGoogle Scholar
  19. Ruoppolo M, Orru S, D’Amato A, Francese S, Rovero P, Marino G, Esposito C (2003) Analysis of transglutaminase protein substrates by functional proteomics. Protein Sci 12:1290–1297PubMedCrossRefGoogle Scholar
  20. Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGase 2 and Factor XIIIa. J Biol Chem 281:17699–17706PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kazuya Watanabe
    • 1
  • Kanako Tsunoda
    • 1
  • Miho Itoh
    • 1
  • Mina Fukui
    • 1
  • Hitoshi Mori
    • 2
  • Kiyotaka Hitomi
    • 1
  1. 1.Department of Applied Molecular BiosciencesGraduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan
  2. 2.Department of Bioengineering SciencesGraduate School of Bioagricultural Sciences, Nagoya UniversityNagoyaJapan

Personalised recommendations