Skip to main content

Advertisement

Log in

In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Lamin A/C proteins are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A few specific mutations in the lamin A/C gene cause a disease with remarkably different clinical features: FPLD, or familial partial lipodystrophy (Dunnigan-type), which mainly affects adipose tissue. Lamin A/C mutant R482W is the key variant that causes FPLD. Biomolecular interaction and molecular dynamics (MD) simulation analysis were performed to understand dynamic behavior of native and mutant structures at atomic level. Mutant lamin A/C (R482W) showed more interaction with its biological partners due to its expansion of interaction surface and flexible nature of binding residues than native lamin A/C. MD simulation clearly indicates that the flexibility of interacting residues of mutant are mainly due to less involvement in formation of inter and intramolecular hydrogen bonds. Our analysis of native and Mutant lamin A/C clearly shows that the structural and functional consequences of the mutation R482W causes FPLD. Because of the pivotal role of lamin A/C in maintaining dynamics of nuclear function, these differences likely contribute to or represent novel mechanisms in laminopathy development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  PubMed  CAS  Google Scholar 

  • Araújo-Vilar D, Lattanzi G, González-Méndez B, Costa-Freitas AT, Prieto D, Columbaro M, Mattioli E, Victoria B, Martínez-Sánchez N, Ramazanova A, Fraga M, Beiras A, Forteza J, Domínguez-Gerpe L, Calvo C, Lado-Abeal J (2009) Site-dependent differences in both prelamin A and adipogenic genes in subcutaneous adipose tissue of patients with type 2 familial partial lipodystrophy. J Med Genet 46(1):40–48

    Article  PubMed  Google Scholar 

  • Bank EM, Ben-Harush K, Wiesel-Motiuk N, Barkan R, Feinstein N, Lotan O, Medalia O, Gruenbaum Y (2011) A laminopathic mutation disrupting lamin filament assembly causes disease-like phenotypes in Caenorhabditis elegans. Mol Biol Cell 22(15):2716–2728

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Gunsteren WFV, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. D Reidel Publishing Company, Dordrecht, pp 331–342

    Google Scholar 

  • Berendsen HJC, Postma JPM, DiNola A, Hakk JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berman HM, Westbrook JZ, Feng G, Gilliland TN, Bhat H, Weissig IN et al (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  PubMed  CAS  Google Scholar 

  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  • Burke B, Stewart CL (2002) Life at the edge: the nuclear envelope and human disease. Nat Rev Mol Cell Biol 3:575–585

    Article  PubMed  CAS  Google Scholar 

  • Burn J, Baraitser M (1986) Partial lipoatrophy with insulin resistant diabetes and hyperlipidaemia (Dunnigan syndrome). J Med Genet 23:128–130

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Pearlman DA, Caldwell JW, Wang J, Ross WS, Simmerling CL, Darden TA, Mertz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsue V, Gohlke H, Radmer R, Duan Y, Pitera J, Massova I, Seibel GL, Singh C, Weiner P, Kollman PA (2002) AMBER simulation software package, version 7, vol 2006. University of California, San Francisco

    Google Scholar 

  • Clements L, Manilal S, Love DR, Morris GE (2000) Direct interaction between emerin and lamin A. Biochem Biophys Res Commun 267:709–714

    Article  PubMed  CAS  Google Scholar 

  • Cohen M, Lee KK, Wilson KL, Gruenbaum Y (2001) Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem Sci 26:41–47

    Article  PubMed  CAS  Google Scholar 

  • de Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  Google Scholar 

  • Dhe-Paganon S, Werner ED, Chi YI, Shoelson SE (2002) Structure of the globular tail of nuclear lamin. J Biol Chem 277(20):17381–17384

    Article  PubMed  CAS  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber F, Argos P (1996) Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation. Protein Eng 9(12):1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK (2006) Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20(4):486–500

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Peshock RM, Fleckenstein JL (1999) Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab 84:170–174

    Article  PubMed  CAS  Google Scholar 

  • Gunsteren WFV, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi TG (1996) Biomolecular simulation: the Gromos 96 manual and user guide. Hochschulverlag AG an der Zurich, Zurich

    Google Scholar 

  • Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct Funct Genet 47:409–443

    Article  PubMed  CAS  Google Scholar 

  • Hegele RA (2001) Premature atherosclerosis associated with monogenic insulin resistance. Circulation 103:2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Hegele RA, Cao H, Anderson CM, Hramiak IM (2000a) Heterogeneity of nuclear lamin A mutations in Dunnigan-type familial partial lipodystrophy. J Clin Endocrinol Metab 85:3431–3435

    Article  PubMed  CAS  Google Scholar 

  • Hegele RA, Anderson CM, Cao H (2000b) Lamin A/C mutation in a woman and her two daughters with Dunnigan-type partial lipodystrophy and insulin resistance. Diabetes Care 23:258–259

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jacob KN, Garg A (2006) Laminopathies: multisystem dystrophy syndromes. Mol Genet Metab 87:289–302

    Article  PubMed  CAS  Google Scholar 

  • Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ (2003) CAPRI: a critical assessment of predicted interactions. Proteins Struct Funct Genet 52:2–9

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Spiegelman BM (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10(9):1096–1107

    Article  PubMed  CAS  Google Scholar 

  • Kobberling J, Dunnigan MF (1986) Familial partial lipodystrophy: two types of an X linked dominant syndrome, lethal in the hemizygous state. J Med Genet 23:120–127

    Article  PubMed  CAS  Google Scholar 

  • Lado-Abeal J, Calvo RM, Victoria B, Castro I, Obregon MJ, Araujo-Vilar D (2010) Regional decrease of subcutaneous adipose tissue in patients with type 2 familial partial lipodystrophy is associated with changes in thyroid hormone metabolism. Thyroid. 20(4):419–424

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777

    Article  PubMed  CAS  Google Scholar 

  • Magracheva E, Kozlov S, Stewart CL, Wlodawer A, Zdanov A (2009) Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD). Acta Crystallogr Sect F Struct Biol Cryst Commun 65:665–670

    Article  PubMed  Google Scholar 

  • Manilal S, Man NT, Morris GE (1998) Colocalization of emerin and lamins in interphase nuclei and changes during mitosis. Biochem Biophys Res Commun 249:643–647

    Article  PubMed  CAS  Google Scholar 

  • Manilal S, Sewry CA, Pereboev A (1999) Colocalization of emerin and lamins in interphase nuclei and changes during mitosis. Hum Mol Genet 8:353–359

    Article  PubMed  CAS  Google Scholar 

  • Maraldi NM, Capanni C, Mattioli E, Columbaro M, Squarzoni S, Parnaik WK, Wehnert M, Lattanzi G (2007) A pathogenic mechanism leading to partial lipodystrophy and prospects for pharmacological treatment of insulin resistance syndrome. Acta Biomed 78:207–215

    PubMed  Google Scholar 

  • Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G (2011) Laminopathies and lamin-associated signaling pathways. J Cell Biochem 112(4):979–992

    Article  PubMed  CAS  Google Scholar 

  • McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

  • Newport JW, Wilson KL, Dunphy WG (1990) A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 111:2247–2259

    Article  PubMed  CAS  Google Scholar 

  • Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, Kesteven SH, Michalicek J, Otway R, Verheyen F, Rainer S, Stewart CL, Martin D, Feneley MP, Fatkin D (2004) Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest 113(3):357–369

    PubMed  CAS  Google Scholar 

  • Nilges M (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J Mol Biol 245:645–660

    Article  PubMed  CAS  Google Scholar 

  • Nilges M, Macias MJ, O’Donoghue SI, Oschkinat H (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 269:408–422

    Article  PubMed  CAS  Google Scholar 

  • Ostlund C, Ellenberg J, Hallberg E, Lippincott-Schwartz J, Worman HJ (1999) Intracellular trafficking of emerin, the Emery–Dreifuss muscular dystrophy protein. J Cell Sci 112:1709–1719

    PubMed  CAS  Google Scholar 

  • Ostlund C, Bonne G, Schwartz K, Worman HJ (2001) Properties of lamin A mutants found in Emery–Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J Cell Sci 114:4435–4445

    PubMed  CAS  Google Scholar 

  • Párraga A, Bellsolell L, Ferré-D’Amaré AR, Burley SK (1998) Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution. Structure 6(5):661–672

    Article  PubMed  Google Scholar 

  • Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13:1059–1085

    Article  PubMed  CAS  Google Scholar 

  • Purohit R, Sethumadhavan R (2009) Structural Basis for the resilience of darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci 1(4):320–328

    Article  PubMed  CAS  Google Scholar 

  • Purohit R, Rajasekaran R, Sudandiradoss C, George Priya Doss C, Ramanathan K, Sethumadhavan R (2008) Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants. Int J Biol Macromol 42(4):386–391

    Article  PubMed  CAS  Google Scholar 

  • Purohit R, Rajendran V, Sethumadhavan R (2011a) Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: an in silico analysis. J Mol Model 17(4):869–877

    Article  PubMed  CAS  Google Scholar 

  • Purohit R, Rajendran V, Sethumadhavan R (2011b) Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn 29(1):137–152

    Article  PubMed  CAS  Google Scholar 

  • Sakaki M, Koike H, Takahashi N, Sasagawa N, Tomioka S, Arahata K, Ishiura S (2001) Interaction between emerin and nuclear lamins. J Biochem 129(2):321–327

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HH, Genschel J, Baier P, Schmidt M, Ockenga J, Tietge UJ, Pröpsting M, Büttner C, Manns MP, Lochs H, Brabant G (2001) Dyslipemia in familial partial lipodystrophy caused by an R482W mutation in the LMNA gene. J Clin Endocrinol Metab 86(5):2289–2295

    Article  PubMed  CAS  Google Scholar 

  • Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S, Durrington PN, Gregory S, O’Rahilly S, Trembath RC (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24:153–156

    Article  PubMed  CAS  Google Scholar 

  • Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E, Taylor SI, Lovett M, Bowcock AM (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66:1192–1198

    Article  PubMed  CAS  Google Scholar 

  • Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Strelkov SV, Herrmann H, Aebi U (2003) Molecular architecture of intermediate filaments. Bioessays 25:243–251

    Article  PubMed  CAS  Google Scholar 

  • Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66

    Article  PubMed  CAS  Google Scholar 

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B (1999) Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Madej T, Panchenko A, Alexov E (2009) Modeling effects of human single nucleotide polymorphisms on protein–protein interactions. Biophys J 96(6):2178–2188

    Article  PubMed  CAS  Google Scholar 

  • Tilgner K, Wojciechowicz K, Jahoda C, Hutchison C, Markiewicz E (2009) Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of {beta}-catenin. J Cell Sci 122:401–413

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya Y, Hase A, Ogawa M, Yorifuji H, Arahata A (1999) Distinct regions specify the nuclear membrane targeting of emerin, the responsible protein for Emery–Dreifuss muscular dystrophy. Eur J Biochem 259:859–886

    Article  PubMed  CAS  Google Scholar 

  • Vallone B, Miele AE, Vecchini P, Chiancone E, Brunori M (1998) Free energy of burying hydrophobic residues in the interface between protein subunits. Proc Natl Acad Sci USA 95:6103–6107

    Article  PubMed  CAS  Google Scholar 

  • Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, Millaire A, Lascols O, Vermersch P, Wemeau JL, Capeau J, Vigouroux C (2004) Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab 89(11):5337–5346

    Article  PubMed  CAS  Google Scholar 

  • Vantyghem MC, Faivre-Defrance F, Marcelli-Tourvieille S, Fermon C, Evrard A, Bourdelle-Hego MF (2007) Familial partial lipodystrophy due to the LMNA R482W mutation with multinodular goitre, extrapyramidal syndrome and primary hyperaldosteronism. Clin Endocrinol (Oxf) 67(2):247–249

    Article  CAS  Google Scholar 

  • Vigouroux C, Magré J, Vantyghem MC, Bourut C, Lascols O, Shackleton S, Lloyd DJ, Guerci B, Padova G, Valensi P, Grimaldi A, Piquemal R, Touraine P, Trembath RC, Capeau J (2000) Lamin A/C gene. Sex-determined expression of mutations in Dunnigan-type familial partial lipodystrophy and absence of coding mutations in congenital and acquired generalized lipoatrophy. Diabetes 49:1958–1962

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J, Courvalin JC, Buendia B (2001) Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J Cell Sci 114:4459–4468

    PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  • Wolff N, Gilquin B, Courchay K, Callebaut I, Worman HJ, Zinn-Justin S (2001) Structural analysis of emerin, an inner nuclear membrane protein mutated in X-linked Emery–Dreifuss muscular dystrophy. FEBS Lett 501(2–3):171–176

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75(1):187–197

    PubMed  CAS  Google Scholar 

  • Young L, Jernigan RL, Covell DG (1994) A role for surface hydrophobicity in protein–protein recognition. Protein Sci 3(5):717–729

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Norris J, Schwartz C, Alexov E (2011) In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase. PLoS One 6(5):e20373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the management of Vellore Institute of Technology University for providing the facilities to carry out this work. We thank the anonymous reviewers for their helpful comments and critical reading of the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao Sethumadhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, V., Purohit, R. & Sethumadhavan, R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids 43, 603–615 (2012). https://doi.org/10.1007/s00726-011-1108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1108-7

Keywords

Navigation