Advertisement

Amino Acids

, Volume 43, Issue 1, pp 309–316 | Cite as

Bi-functional peptides with both trypsin-inhibitory and antimicrobial activities are frequent defensive molecules in Ranidae amphibian skins

  • Xiuwen Yan
  • Huan LiuEmail author
  • Xuening Yang
  • Qiaolin Che
  • Rui Liu
  • Hailong Yang
  • Xiuhong Liu
  • Dewen You
  • Aili Wang
  • Jianxu Li
  • Ren LaiEmail author
Original Article

Abstract

Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17–20 amino acid residues (aa). All of them are encoded by precursors with length of 65–70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.

Keywords

Amphibian Skin Antimicrobial peptide Innate immunity Protease inhibitor Serine 

Notes

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (30830021, 30800185, 31025025), the Ministry of Science and Technology (2010CB529800, 2009ZX09103-1/091) and the Ministry of Agriculture (2009ZX08009-159B).

Conflict of interest

None.

Supplementary material

726_2011_1079_MOESM1_ESM.ppt (200 kb)
Supplementary material 1 (PPT 200 kb)
726_2011_1079_MOESM2_ESM.doc (24 kb)
Supplementary material 2 (DOC 23 kb)

References

  1. Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451PubMedCrossRefGoogle Scholar
  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3:238–250PubMedCrossRefGoogle Scholar
  3. Chen T, Farragher S, Bjourson AJ, Orr DF, Rao P, Shaw C (2003) Granular gland transcriptomes in stimulated amphibian skin secretions. Biochem J 371:125–130PubMedCrossRefGoogle Scholar
  4. Chen T, Zhou M, Rao P, Walker B, Shaw C (2006) The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides. Peptides 27:1738–1744PubMedCrossRefGoogle Scholar
  5. Christeller JT (2005) Evolutionary mechanisms acting on proteinase inhibitor variability. FEBS J 272:5710–5722PubMedCrossRefGoogle Scholar
  6. Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc 72:365–379PubMedCrossRefGoogle Scholar
  7. Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta 1696:1–14PubMedGoogle Scholar
  8. Graham C, Irvine AE, McClean S, Richter SC, Flatt PR, Shaw C (2005) Peptide Tyrosine Arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides 26:737–743PubMedCrossRefGoogle Scholar
  9. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, HongT Trinh, Pham TT, Le-Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730PubMedCrossRefGoogle Scholar
  10. Korsinczky ML, Schirra HJ, Rosengren KJ, West J, Condie BA, Otvos L, Anderson MA, Craik DJ (2001) Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant. J Mol Biol 311:579–591PubMedCrossRefGoogle Scholar
  11. Liu C, Hong J, Yang H, Wu J, Ma D, Li D, Lin D, Lai R (2010) Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free Radic Biol Med 48:1173–1181PubMedCrossRefGoogle Scholar
  12. Li J, Zhang C, Xu X, Wang J, Yu H, Lai R, Gong W (2007a) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J 21:2466–2473PubMedCrossRefGoogle Scholar
  13. Li J, Xu X, Xu C, Zhou W, Zhang K, Yu H, Zhang Y, Zheng Y, Rees HH, Lai R, Yang D, Wu J (2007b) Anti-infection peptidomics of amphibian skin. Mol Cell Proteom 6:882–894CrossRefGoogle Scholar
  14. Li J, Wu J, Wang Y, Xu X, Liu T, Lai R, Zhu H (2008) A small trypsin inhibitor from the frog of Odorrana grahami. Biochimie 90:1356–1361PubMedCrossRefGoogle Scholar
  15. Mangoni ML, Papo N, Mignogna G, Andreu D, Shai Y, Barra D, Simmaco M (2003) Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Biochemistry 42:14023–14035PubMedCrossRefGoogle Scholar
  16. Ma Y, Liu C, Liu X, Wu J, Yang H, Wang Y, Li J, Yu H, Lai R (2010) Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics 95:66–71PubMedCrossRefGoogle Scholar
  17. Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V et al (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17:275–283PubMedCrossRefGoogle Scholar
  18. Park JM, Jung JE, Lee BJ (1994) Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 205:948–954PubMedCrossRefGoogle Scholar
  19. Prakash B, Selvaraj S, Murthy MR, Sreerama YN, Rao DR, Gowda LR (1996) Analysis of the amino acid sequences of plant Bowman–Birk inhibitors. J Mol Evol 42:560–569PubMedCrossRefGoogle Scholar
  20. Qi RF, Song ZW, Chi CW (2005) Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 37:283–292CrossRefGoogle Scholar
  21. Salmon AL, Cross LJ, Irvine AE, Lappin TR, Dathe M, Krause G, Canning P, Thim L, Beyermann M, Rothemund S, Bienert M, Shaw C (2001) Peptide leucine arginine, a potent immunomodulatory peptide isolated and structurally characterized from the skin of the Northern Leopard frog, Rana pipiens. J Biol Chem 276:10145–10152PubMedCrossRefGoogle Scholar
  22. Simmaco M, Mignogna G, Barra D, Bossa F (1994) Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem 269:11956–11961PubMedGoogle Scholar
  23. Song G, Zhou M, Chen T, ChenW W, Walker B, Shaw C (2008) HV-BBI—a novel amphibian skin Bowman–Birk-like trypsin inhibitor. Biochem Biophys Res Commun 372:191–196PubMedCrossRefGoogle Scholar
  24. Wang A, Wang J, Hong J, Feng H, Yang H, Yu X, Ma Y, Lai R (2008) A novel family of antimicrobial peptides from the skin of Amolops loloensis. Biochimie 90:863–867PubMedCrossRefGoogle Scholar
  25. Wang H, Yan X, Yu H, Hu Y, Yu Z, Zheng H, Chen Z, Zhang Z, Liu J (2009) Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura:Ranidae). Biochimie 91:540–547PubMedCrossRefGoogle Scholar
  26. Wang L, Evaristo G, Zhou M, Pinkse M, Wang M, Xu Y, Jiang X, Chen T, Rao P, Verhaert P, Shaw C (2010) Nigrocin-2 peptides from Chinese Odorrana frogs–integration of UPLC/MS/MS with molecular cloning in amphibian skin peptidome analysis. FEBS J 277:1519–1531PubMedCrossRefGoogle Scholar
  27. Yang H, Wang X, Liu X, Wu J, Liu C, Gong W, Zhao Z, Hong J, Lin D, Wang Y, Lai R (2009) Antioxidant peptidomics reveals novel skin antioxidant system. Mol Cell Proteom 8:571–583CrossRefGoogle Scholar
  28. You D, Hong J, Rong M, Yu H, Liang S, Ma Y, Yang H, Wu J, Lin D, Lai R (2009) The first gene-encoded amphibian neurotoxin. J Biol Chem 284:22079–22086PubMedCrossRefGoogle Scholar
  29. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  30. Zhou M, Wang L, Owens DE, Chen T, Walker B, Shaw C (2007) Rapid identification of precursor cDNAs encoding five structural classes of antimicrobial peptides from pickerel frog (Rana palustris) skin secretion by single step ‘shotgun’ cloning. Peptides 28:1605–1610PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xiuwen Yan
    • 1
  • Huan Liu
    • 2
    • 3
    Email author
  • Xuening Yang
    • 2
    • 3
  • Qiaolin Che
    • 1
  • Rui Liu
    • 2
  • Hailong Yang
    • 2
    • 3
  • Xiuhong Liu
    • 1
  • Dewen You
    • 2
  • Aili Wang
    • 1
  • Jianxu Li
    • 2
  • Ren Lai
    • 1
    • 2
    Email author
  1. 1.Life Sciences College of Nanjing Agricultural University, NanjingJiangsuChina
  2. 2.Key Laboratory of Animal Models and Human Disease MechanismsKunming Institute of Zoology, Chinese Academy of Sciences, KunmingYunnanChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations