Skip to main content
Log in

Coenzyme preference of Streptococcus pyogenes δ1-pyrroline-5-carboxylate reductase: evidence supporting NADPH as the physiological electron donor

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The streptococcal enzyme that catalyzes the last step in proline biosynthesis was heterologously expressed and the recombinant protein was purified to electrophoretic homogeneity and characterized thoroughly. As for δ1-pyrroline-5-carboxylate reductases from other sources, it was able to use either NADH or NADPH as the electron donor in vitro. However, with NADH the activity was markedly inhibited by physiological levels of NADP+. Results also strengthen the possibility that an unusual ordered substrate binding occurs, in which the dinucleotide binds last.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aral B, Kamoun P (1997) The proline biosynthesis in living organisms. Amino Acids 13:189–217

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    PubMed  CAS  Google Scholar 

  • Deutch CE, Klarstrom JL, Link CL, Ricciardi DL (2001) Oxidation of l-thiazolidine-4-carboxylate by δ1-pyrroline-5-carboxylate reductase in Escherichia coli. Curr Microbiol 42:426–442

    Article  Google Scholar 

  • Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 98:4658–4663

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Scainelli D, Nielsen E (1997) δ1-Pyrroline-5-carboxylate dehydrogenase from cultured cells of potato. Purification and properties. Plant Physiol 113:1413–1418

    PubMed  CAS  Google Scholar 

  • Forlani G, Giberti S, Berlicki Ł, Petrollino D, Kafarski P (2007) Plant P5C reductase as a new target for aminomethylenebisphosphonates. J Agric Food Chem 55:4340–4347

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Occhipinti A, Berlicki Ł, Dziedzioła G, Wieczorek A, Kafarski P (2008) Tailoring the structure of aminobisphosphonates to target plant P5C reductase. J Agric Food Chem 56:3193–3199

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Petrollino D, Fusetti M, Romanini L, Nocek B, Joachimiak A, Berlicki Ł, Kafarski P (2011) δ1-Pyrroline-5-carboxylate reductase as a new target for therapeutics: inhibition of the enzyme from Streptococcus pyogenes and activity in vivo. Amino Acids. doi:10.1007/s00726-011-0970-7

  • Grose JH, Joss L, Velick SF, Roth JR (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA 103:7601–7606

    Article  PubMed  CAS  Google Scholar 

  • Hu CA, Donald SP, Yu J, Lin WW, Liu Z, Steel G, Obie C, Valle D, Phang JM (2007) Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 295:85–92

    Article  PubMed  CAS  Google Scholar 

  • Hua XJ, van de Cotte B, Van Montagu M, Verbruggen N (2001) The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J 26:157–169

    Article  PubMed  CAS  Google Scholar 

  • Iwami Y, Yamada T (1999) Intracellular flux of glucose metabolism in streptococcal cells by simultaneous monitoring of fluorescence dependent on reduced nicotinamide adenine nucleotide and acid excretion under strictly anaerobic conditions. Oral Microbiol Immunol 14:220–224

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, SriLaxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Lou Z, Liu Z, Li M, Zhao X, Bartlam M, Rao Z (2006) Crystal structure of human pyrroline-5-carboxylate reductase. J Mol Biol 395:1364–1377

    Article  Google Scholar 

  • Merrill MJ, Yeh GC, Phang JM (1989) Purified human erythrocyte pyrroline-5-carboxylate reductase. J Biol Chem 264:9352–9358

    PubMed  CAS  Google Scholar 

  • Miller BG, Wolfenden R (2002) Catalytic proficiency: the unusual case of OMP decarboxylase. Annu Rev Biochem 71:847–885

    Article  PubMed  CAS  Google Scholar 

  • Murahama M, Yoshida T, Hayashi F, Ichino T, Sanada Y, Wada K (2001) Purification and characterization of δ1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol 42:742–750

    Article  PubMed  CAS  Google Scholar 

  • Nocek B, Chang C, Li H, Lezondra L, Holzle D, Collart F, Joachimiak A (2005) Crystal structures of δ1-pyrroline-5-carboxylate reductase from human pathogens Neisseria meningitides and Streptococcus pyogenes. J Mol Biol 354:91–106

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Arellano I, Rubio V, Cervera J (2006) Mapping active site residues in glutamate-5-kinase. The substrate glutamate and the feed-back inhibitor proline bind at overlapping sites. FEBS Lett 580:6247–6253

    Article  PubMed  Google Scholar 

  • Phang JM, Liu W, Zabirnyk O (2010) Proline metabolism and microenvironmental stress. Annu Rev Nutr 30:15.1–15.23

    Article  Google Scholar 

  • Sanli G, Dudley JI, Blaber M (2003) Structural biology of the aldo–keto reductase family of enzymes: catalysis and cofactor binding. Cell Biochem Biophys 38:79–101

    Article  PubMed  CAS  Google Scholar 

  • Shi F, Li Y, Li Y, Wang X (2009) Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin (Shanghai) 41:352–361

    Article  CAS  Google Scholar 

  • Small WC, Jones ME (1990) Pyrroline 5-carboxylate dehydrogenase of the mitochondrial matrix of rat liver. Purification, physical and kinetic characteristics. J Biol Chem 265:18668–18672

    PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Tanner JJ (2008) Structural biology of proline catabolism. Amino Acids 35:719–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Ferrara within the frame of the project FAR2010. Davide Petrollino acknowledges an applied research fellowship from Spinner Consortium, Emilia Romagna Region. The authors are indebted with Dr Bogusław Nocek (Midwest Center for Structural Genomics, Argonne IL 60439, USA) for providing the pMCSG7 vector bearing the Streptococcus pyogenes P5CR gene.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Forlani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 705 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrollino, D., Forlani, G. Coenzyme preference of Streptococcus pyogenes δ1-pyrroline-5-carboxylate reductase: evidence supporting NADPH as the physiological electron donor. Amino Acids 43, 493–497 (2012). https://doi.org/10.1007/s00726-011-1077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1077-x

Keywords

Navigation