Advertisement

Amino Acids

, Volume 43, Issue 1, pp 299–308 | Cite as

Using the same organocatalyst for asymmetric synthesis of both enantiomers of glutamic acid-derived Ni(II) complexes via 1,4-additions of achiral glycine and dehydroalanine Schiff base Ni(II) complexes

  • Yuri N. BelokonEmail author
  • Zalina T. Gugkaeva
  • Karine V. Hakobyan
  • Victor I. Maleev
  • Margarita A. Moskalenko
  • Victor N. Khrustalev
  • Ashot S. Saghyan
  • Alan T. Tsaloev
  • Kiryl K. Babievsky
Original Article

Abstract

(S)- and (R)-BIMBOL were efficient PT catalysts of asymmetric Michael addition of prochiral Ni–PBP–Gly (1) to acrylic esters and malonic esters to Ni–PBP–Δ-Ala (2) correspondingly. The salient feature of the catalysis is opposite configurations of Glu prepared via the two paths with BIMBOL of the same configuration and a perspective novel catalytic procedure for the synthesis of Gla derivatives.

Keywords

γ-Carboxyglutamic acid Glutamic acid Asymmetric organocatalysis Michael addition 

Abbreviation

PBP

N-(2-benzoylphenyl)pyridine-2-carboxamide

Ni–PBP–Gly (1)

Ni(II) complex of a Schiff base of glycine with PBP

Ni–PBP–Δ-Ala (2)

Ni(II) complex of Schiff base of dehydroalanine with PBP

MOM

Methoxymethylene group

DCE

Dichloroethane

DCM

Dichloromethane

HMDSLi

Lithium hexamethyldisilaside

Gly

Glycine

Glu

Glutamic acid

Gla

γ-Carboxyglutamic acid

PTC

Phase transfer catalysis

TADDOL

(2,2′-Dimethyl-1,3-dioxolan-4,5-diyl)bis(diphenylmethanol)

NOBIN

2′-Amino-[1,1′-binaphthalen]-2-ol

iso-NOBIN

8′-Amino-[1,1′-binaphthalen]-2-ol

BINOL

[1,1′-Binaphthalene]-2,2’-diol

BIMBOL

3,3′-Bis(hydroxydiphenylmethyl)-[1,1′-binaphthalene]-2,2′-diol

ee

Enantiomeric excess

dr

Diastereomers ratio

Notes

Acknowledgments

The support of this work by RFBR Grants No. 11-03-00206-a and 09-03-00730 is gratefully acknowledged. The authors thank Prof. K. A. Lyssenko (A. N. Nesmeyanov Institute of Organoelement Compounds RAS) for performing the X-ray structure analysis of compound 2 and Dr. M. G. Ezernitskaya for IR studies.

Supplementary material

726_2011_1076_MOESM1_ESM.doc (86 kb)
Supplementary material 1 (DOC 86 kb)

References

  1. Belokon YN, Bespalova NB, Churkina TD, Císařová I, Ezernitskaya MG, Harutyunyan SR, Hrdina R, Kagan HB, Kočovský P, Kochetkov KA, Larionov OV, Lyssenko KA, North M, Polášek M, Peregudov AS, Prisyazhnyuk VV, Vyskoil S (2003) Synthesis of α-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived schiff bases. J Am Chem Soc 125:12860–12871PubMedCrossRefGoogle Scholar
  2. Belokon YN, Harutyunyan S, Vorontsov EV, Peregudov AS, Chrustalev VN, Kochetkov KA, Pripadchev D, Sagyan AS, Beck AK, Seebach D (2004) Nucleophilic addition to an achiral dehydroalanine Schiff base Ni(II) complex as a route to amino acids. A case of stereodetermining asymmetric protonation in the presence of TADDOL. ARKIVOC iii:132–150Google Scholar
  3. Belokon YN, Gugkaeva ZT, Maleev VI, Moskalenko MA, Tsaloev AT, Khrustalev VN, Hakobyan KV (2011) Four hydroxyls are better than two. The use of a chiral lithium salt of 3, 3′-bis-methanol-2, 2′-binaphthol as a multifunctional catalyst of enantioselective Michael addition reactions. Tetrahedron Asymmetr 22:167–172CrossRefGoogle Scholar
  4. Cativiela C, de Díaz Villegas MD (1998) Stereoselective synthesis of quaternary α-amino acids. Part 1. Acyclic compounds. Tetrahedron Asymmetr 9:3517–3599CrossRefGoogle Scholar
  5. Cheon CH, Yamamoto H (2008) A brønsted acid catalyst for the enantioselective protonation reaction. J Am Chem Soc 130:9246–9247PubMedCrossRefGoogle Scholar
  6. Corey EJ, Noe MC, Xu F (1998) Highly enantioselective synthesis of cyclic and functionalized α-amino acids by means of a chiral phase transfer catalyst. Tetrahedron Lett 39:5347–5350CrossRefGoogle Scholar
  7. Duthaler RO (1994) Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron 50:1539–1650CrossRefGoogle Scholar
  8. Emori E, Arai T, Sasai H, Shibasaki M (1998) A catalytic michael addition of thiols to α, β-unsaturated carbonyl compounds: asymmetric michael additions and asymmetric protonations. J Am Chem Soc 120:4043–4044CrossRefGoogle Scholar
  9. Fehr C (1996) Enantioselective protonation of enolates and enols. Angew Chem Int Ed Engl 35:2566–2587CrossRefGoogle Scholar
  10. Huffman CW, Scelly WG (1963) Glutamic acid: chemical syntheses and resolutions. Chem Rev 63:625–644CrossRefGoogle Scholar
  11. Kirshner S, Ahmad N, Magnell K (1968) Optical rotatory dispersion and the Pfeiffer effect in coordination compounds. Coord Chem Rev 3:201–206CrossRefGoogle Scholar
  12. Kobayashi S, Yamashita Y (2011) Alkaline Earth metal catalysts for asymmetric reactions. Acc Chem Res 44:58–71PubMedCrossRefGoogle Scholar
  13. Kumar A, Salunkhe RV, Rane RA, Dike SY (1991) Novel catalytic enantioselective protonation (proton transfer) in Michael addition of benzenethiol to α-acrylacrylates: synthesis of (S)-naproxen and α-arylpropionic acids or esters. J Chem Soc Chem Commun 485–486Google Scholar
  14. Leow D, Lin S, Chittimalla SK, Fu X, Tan CH (2008) Enantioselective protonation catalyzed by a chiral bicyclic guanidine derivative. Angew Chem Int Ed Engl 47:5641–5645PubMedCrossRefGoogle Scholar
  15. Lygo B, Crosby J, Lowdon TR, Peterson JA, Wainwright PG (2001) Studies on the enantioselective synthesis of α-amino acids via asymmetric phase-transfer catalysis. Tetrahedron 57:2403–2409CrossRefGoogle Scholar
  16. Ma J-A (2003) Recent developments in the catalytic asymmetric synthesis of α-and β-amino acids. Angew Chem Int Ed Engl 42:4290–4299PubMedCrossRefGoogle Scholar
  17. Maruoka K, Ooi T (2003) Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem Rev 103:3013–3028PubMedCrossRefGoogle Scholar
  18. Muñoz-Muñiz O, Juaristi E (2003) Enantioselective protonation of prochiral enolates in the asymmetric synthesis of (S)-naproxen. Tetrahedron Lett 44:2023–2026CrossRefGoogle Scholar
  19. Nájera C, Sansano JM (2007) Catalytic asymmetric synthesis of α-amino acids. Chem Rev 107:4584–4671PubMedCrossRefGoogle Scholar
  20. Navarre L, Martinez R, Genet JP, Darses S (2008) Access to enantioenriched α-amino esters via Rhodium-catalyzed 1, 4-addition/enantioselective protonation. J Am Chem Soc 130:6159–6169PubMedCrossRefGoogle Scholar
  21. Nishimura K, Ono M, Nagaoka Y, Tomioka K (2001) Catalytic Enantioselective protonation of Lithium ester enolates generated by conjugate addition of arylthiolate to enoates. Angew Chem Int Ed Engl 40:440–442PubMedCrossRefGoogle Scholar
  22. O’Donnell MJ, Bennett WD, Bruder WA, Jacobsen WN, Knuth K, LeClef B, Polt RL, Bordwell FG, Mrozack SR, Cripe TR (1988) Acidities of glycine Schiff bases and alkylation of their conjugate bases. J Am Chem Soc 110:8520–8525CrossRefGoogle Scholar
  23. Pfeiffer P, Quell K (1931) Über einen neuen Effekt in Lösungen optisch-aktiver Substanzen. Ber 64: 2667–2671Google Scholar
  24. Pracejus H, Wilcke FW, Hanemann K (1977) Asymmetrisch katalysierte Additionen von Thiolen an α-Aminoacrylsäure-Derivate und Nitroolefine. J Prakt Chem 319:219–229CrossRefGoogle Scholar
  25. Smith DJ, Yap GPA, Kelley JA, Schneider JP (2011) Enhanced stereoselectivity of a Cu(II) complex chiral auxiliary in the synthesis of Fmoc-l-γ-carboxyglutamic acid. J Org Chem 76:1513–1520PubMedCrossRefGoogle Scholar
  26. Tsubogo T, Kano Y, Ikemoto K, Yamashita Y, Kobayashi S (2010) Synthesis of optically active, unnatural α-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1, 4-addition reaction. Tetrahedron Asymmetr 21:1221–1225CrossRefGoogle Scholar
  27. Vyskočil S, Meca L, Tišlerová I, Císařová I, Polášek M, Harutyunyan SR, Belokon YN, Stead RMJ, Farrugia L, Lockhart SC, Mitchell WL, Kočovský P (2002) 2, 8′-Disubstituted-1, 1′-binaphthyls: a new pattern in chiral ligands. Chem Eur J 8:4633–4648PubMedCrossRefGoogle Scholar
  28. Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu XQ, Pu L (2007) Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. J Org Chem 97–101Google Scholar
  29. Williams RM (1989) Synthesis of optically active α-amino acids. Pergamon Press, OxfordGoogle Scholar
  30. Yanagisawa A, Yamamoto H (1999) Protonation of Enolates. In: Jacobsen EN, Pflatz A, Yamamoto H (eds) Comprhensive asymmetric catalysis. Springer, Heidelberg, pp 1295–1306Google Scholar
  31. Yanagisawa A, Watanabe T, Kikuchi T, Yamamoto H (2000) Catalytic enantioselective protonation of Lithium enolates with Chiral imides. J Org Chem 65:2979–2983PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yuri N. Belokon
    • 1
    Email author
  • Zalina T. Gugkaeva
    • 1
  • Karine V. Hakobyan
    • 2
  • Victor I. Maleev
    • 1
  • Margarita A. Moskalenko
    • 1
  • Victor N. Khrustalev
    • 1
  • Ashot S. Saghyan
    • 2
  • Alan T. Tsaloev
    • 1
  • Kiryl K. Babievsky
    • 1
  1. 1.Institute of Russian Academy of Sciences, A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Pharmaceutical ChemistryYerevan State UniversityYerevanArmenia

Personalised recommendations