Skip to main content
Log in

Using the same organocatalyst for asymmetric synthesis of both enantiomers of glutamic acid-derived Ni(II) complexes via 1,4-additions of achiral glycine and dehydroalanine Schiff base Ni(II) complexes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

(S)- and (R)-BIMBOL were efficient PT catalysts of asymmetric Michael addition of prochiral Ni–PBP–Gly (1) to acrylic esters and malonic esters to Ni–PBP–Δ-Ala (2) correspondingly. The salient feature of the catalysis is opposite configurations of Glu prepared via the two paths with BIMBOL of the same configuration and a perspective novel catalytic procedure for the synthesis of Gla derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Chart 1
Scheme 2
Scheme 3

Similar content being viewed by others

Abbreviations

PBP:

N-(2-benzoylphenyl)pyridine-2-carboxamide

Ni–PBP–Gly (1):

Ni(II) complex of a Schiff base of glycine with PBP

Ni–PBP–Δ-Ala (2):

Ni(II) complex of Schiff base of dehydroalanine with PBP

MOM:

Methoxymethylene group

DCE:

Dichloroethane

DCM:

Dichloromethane

HMDSLi:

Lithium hexamethyldisilaside

Gly:

Glycine

Glu:

Glutamic acid

Gla:

γ-Carboxyglutamic acid

PTC:

Phase transfer catalysis

TADDOL:

(2,2′-Dimethyl-1,3-dioxolan-4,5-diyl)bis(diphenylmethanol)

NOBIN:

2′-Amino-[1,1′-binaphthalen]-2-ol

iso-NOBIN:

8′-Amino-[1,1′-binaphthalen]-2-ol

BINOL:

[1,1′-Binaphthalene]-2,2’-diol

BIMBOL:

3,3′-Bis(hydroxydiphenylmethyl)-[1,1′-binaphthalene]-2,2′-diol

ee:

Enantiomeric excess

dr:

Diastereomers ratio

References

  • Belokon YN, Bespalova NB, Churkina TD, Císařová I, Ezernitskaya MG, Harutyunyan SR, Hrdina R, Kagan HB, Kočovský P, Kochetkov KA, Larionov OV, Lyssenko KA, North M, Polášek M, Peregudov AS, Prisyazhnyuk VV, Vyskoil S (2003) Synthesis of α-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived schiff bases. J Am Chem Soc 125:12860–12871

    Article  PubMed  CAS  Google Scholar 

  • Belokon YN, Harutyunyan S, Vorontsov EV, Peregudov AS, Chrustalev VN, Kochetkov KA, Pripadchev D, Sagyan AS, Beck AK, Seebach D (2004) Nucleophilic addition to an achiral dehydroalanine Schiff base Ni(II) complex as a route to amino acids. A case of stereodetermining asymmetric protonation in the presence of TADDOL. ARKIVOC iii:132–150

  • Belokon YN, Gugkaeva ZT, Maleev VI, Moskalenko MA, Tsaloev AT, Khrustalev VN, Hakobyan KV (2011) Four hydroxyls are better than two. The use of a chiral lithium salt of 3, 3′-bis-methanol-2, 2′-binaphthol as a multifunctional catalyst of enantioselective Michael addition reactions. Tetrahedron Asymmetr 22:167–172

    Article  CAS  Google Scholar 

  • Cativiela C, de Díaz Villegas MD (1998) Stereoselective synthesis of quaternary α-amino acids. Part 1. Acyclic compounds. Tetrahedron Asymmetr 9:3517–3599

    Article  CAS  Google Scholar 

  • Cheon CH, Yamamoto H (2008) A brønsted acid catalyst for the enantioselective protonation reaction. J Am Chem Soc 130:9246–9247

    Article  PubMed  CAS  Google Scholar 

  • Corey EJ, Noe MC, Xu F (1998) Highly enantioselective synthesis of cyclic and functionalized α-amino acids by means of a chiral phase transfer catalyst. Tetrahedron Lett 39:5347–5350

    Article  CAS  Google Scholar 

  • Duthaler RO (1994) Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron 50:1539–1650

    Article  CAS  Google Scholar 

  • Emori E, Arai T, Sasai H, Shibasaki M (1998) A catalytic michael addition of thiols to α, β-unsaturated carbonyl compounds: asymmetric michael additions and asymmetric protonations. J Am Chem Soc 120:4043–4044

    Article  CAS  Google Scholar 

  • Fehr C (1996) Enantioselective protonation of enolates and enols. Angew Chem Int Ed Engl 35:2566–2587

    Article  Google Scholar 

  • Huffman CW, Scelly WG (1963) Glutamic acid: chemical syntheses and resolutions. Chem Rev 63:625–644

    Article  Google Scholar 

  • Kirshner S, Ahmad N, Magnell K (1968) Optical rotatory dispersion and the Pfeiffer effect in coordination compounds. Coord Chem Rev 3:201–206

    Article  Google Scholar 

  • Kobayashi S, Yamashita Y (2011) Alkaline Earth metal catalysts for asymmetric reactions. Acc Chem Res 44:58–71

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Salunkhe RV, Rane RA, Dike SY (1991) Novel catalytic enantioselective protonation (proton transfer) in Michael addition of benzenethiol to α-acrylacrylates: synthesis of (S)-naproxen and α-arylpropionic acids or esters. J Chem Soc Chem Commun 485–486

  • Leow D, Lin S, Chittimalla SK, Fu X, Tan CH (2008) Enantioselective protonation catalyzed by a chiral bicyclic guanidine derivative. Angew Chem Int Ed Engl 47:5641–5645

    Article  PubMed  CAS  Google Scholar 

  • Lygo B, Crosby J, Lowdon TR, Peterson JA, Wainwright PG (2001) Studies on the enantioselective synthesis of α-amino acids via asymmetric phase-transfer catalysis. Tetrahedron 57:2403–2409

    Article  CAS  Google Scholar 

  • Ma J-A (2003) Recent developments in the catalytic asymmetric synthesis of α-and β-amino acids. Angew Chem Int Ed Engl 42:4290–4299

    Article  PubMed  CAS  Google Scholar 

  • Maruoka K, Ooi T (2003) Enantioselective amino acid synthesis by chiral phase-transfer catalysis. Chem Rev 103:3013–3028

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Muñiz O, Juaristi E (2003) Enantioselective protonation of prochiral enolates in the asymmetric synthesis of (S)-naproxen. Tetrahedron Lett 44:2023–2026

    Article  Google Scholar 

  • Nájera C, Sansano JM (2007) Catalytic asymmetric synthesis of α-amino acids. Chem Rev 107:4584–4671

    Article  PubMed  Google Scholar 

  • Navarre L, Martinez R, Genet JP, Darses S (2008) Access to enantioenriched α-amino esters via Rhodium-catalyzed 1, 4-addition/enantioselective protonation. J Am Chem Soc 130:6159–6169

    Article  PubMed  CAS  Google Scholar 

  • Nishimura K, Ono M, Nagaoka Y, Tomioka K (2001) Catalytic Enantioselective protonation of Lithium ester enolates generated by conjugate addition of arylthiolate to enoates. Angew Chem Int Ed Engl 40:440–442

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell MJ, Bennett WD, Bruder WA, Jacobsen WN, Knuth K, LeClef B, Polt RL, Bordwell FG, Mrozack SR, Cripe TR (1988) Acidities of glycine Schiff bases and alkylation of their conjugate bases. J Am Chem Soc 110:8520–8525

    Article  Google Scholar 

  • Pfeiffer P, Quell K (1931) Über einen neuen Effekt in Lösungen optisch-aktiver Substanzen. Ber 64: 2667–2671

    Google Scholar 

  • Pracejus H, Wilcke FW, Hanemann K (1977) Asymmetrisch katalysierte Additionen von Thiolen an α-Aminoacrylsäure-Derivate und Nitroolefine. J Prakt Chem 319:219–229

    Article  CAS  Google Scholar 

  • Smith DJ, Yap GPA, Kelley JA, Schneider JP (2011) Enhanced stereoselectivity of a Cu(II) complex chiral auxiliary in the synthesis of Fmoc-l-γ-carboxyglutamic acid. J Org Chem 76:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Tsubogo T, Kano Y, Ikemoto K, Yamashita Y, Kobayashi S (2010) Synthesis of optically active, unnatural α-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1, 4-addition reaction. Tetrahedron Asymmetr 21:1221–1225

    Article  CAS  Google Scholar 

  • Vyskočil S, Meca L, Tišlerová I, Císařová I, Polášek M, Harutyunyan SR, Belokon YN, Stead RMJ, Farrugia L, Lockhart SC, Mitchell WL, Kočovský P (2002) 2, 8′-Disubstituted-1, 1′-binaphthyls: a new pattern in chiral ligands. Chem Eur J 8:4633–4648

    Article  PubMed  Google Scholar 

  • Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu XQ, Pu L (2007) Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1′-binaphthyl compound. J Org Chem 97–101

  • Williams RM (1989) Synthesis of optically active α-amino acids. Pergamon Press, Oxford

    Google Scholar 

  • Yanagisawa A, Yamamoto H (1999) Protonation of Enolates. In: Jacobsen EN, Pflatz A, Yamamoto H (eds) Comprhensive asymmetric catalysis. Springer, Heidelberg, pp 1295–1306

    Google Scholar 

  • Yanagisawa A, Watanabe T, Kikuchi T, Yamamoto H (2000) Catalytic enantioselective protonation of Lithium enolates with Chiral imides. J Org Chem 65:2979–2983

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The support of this work by RFBR Grants No. 11-03-00206-a and 09-03-00730 is gratefully acknowledged. The authors thank Prof. K. A. Lyssenko (A. N. Nesmeyanov Institute of Organoelement Compounds RAS) for performing the X-ray structure analysis of compound 2 and Dr. M. G. Ezernitskaya for IR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Belokon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Experimental data available free of charge in the supplementary section.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belokon, Y.N., Gugkaeva, Z.T., Hakobyan, K.V. et al. Using the same organocatalyst for asymmetric synthesis of both enantiomers of glutamic acid-derived Ni(II) complexes via 1,4-additions of achiral glycine and dehydroalanine Schiff base Ni(II) complexes. Amino Acids 43, 299–308 (2012). https://doi.org/10.1007/s00726-011-1076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1076-y

Keywords

Navigation