Advertisement

Amino Acids

, Volume 43, Issue 1, pp 279–287 | Cite as

Synchrotron vacuum ultraviolet (VUV) photo-induced fragmentation of cyclic dipeptides radical cations

  • Liyun ZhangEmail author
  • Liangyuan Jia
  • Lidong Zhang
  • Huijun Guo
  • Zhongyue Zhou
  • Junjie Weng
  • Fei Qi
Original Article

Abstract

Cyclic dipeptides, due to their chemical properties and various bioactivities, are very attractive for medicinal chemistry. Fragmentations of three simple cyclic dipeptides including cyclo(Gly–Gly), cyclo(Ala–Ala) and cyclo(Gly–Val) in the gas-phase are determined with synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (VUV PIMS) and theoretical calculations. Cyclo(Gly-Gly) and cyclo(Ala-Ala) show the similar fragmentation pathways. The primary decomposition reactions of cyclo(Gly-Gly) and cyclo(Ala-Ala) radical cations are found to be HNCO loss and CO elimination. The appearance energies (AEs) of fragment ions [CH2NHCOCH2]+• and [CH3CHNHCOCHCH3]+• are measured to be 10.21 and 9.66 ± 0.05 eV, respectively, which are formed from cyclo(Gly-Gly) and cyclo(Ala-Ala) radical cations with HNCO elimination. Due to the stabilization of the radical cation of cyclo(Gly-Val) with isopropyl side group, the dominant fragment ion m/z 114 assigned as [C4H6N2O2]+• is produced by γ-H migration and i cleavage to lose propylene. The ionization energies (IEs) of three cyclic dipeptides decrease in the order cyclo(Gly-Gly) (9.33 ± 0.05 eV) > cyclo(Ala-Ala) (9.21 ± 0.05 eV) > cyclo(Gly-Val) (9.09 ± 0.05 eV) from measurements of photoionization efficiency spectra. It implies that IEs of cyclic dipeptides are affected by substituent groups and symmetrical characterization of molecular structures. These observations of the chemical properties of cyclic dipeptides radical ion (M+•) may be important for understanding gas-phase molecular reactivity of 2,5-diketopiperazines and guiding diketopiperazine-based drug design.

Keywords

Cyclic dipeptide VUV photoionization Mass spectrometry Fragmentation 

Notes

Acknowledgments

This study was supported by Natural Science Foundation of China (No. 11105150), China Postdoctoral Science Foundation (No. 20100480699) and the Fundamental Research Funds for the Central Universities (No. WK2310000012).

Supplementary material

726_2011_1072_MOESM1_ESM.doc (290 kb)
Supplementary material (DOC 290 kb)

References

  1. Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104RPubMedCrossRefGoogle Scholar
  2. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  3. Borthwick AD, Davies DE, Exall AM, Hatley RJD, Hughes JA, Irving WR, Livermore DG, Sollis SL, Nerozzi F, Valko KL, Allen MJ, Perren M, Shabbir SS, Woollard PM, Price MA (2006) 2,5-Diketopiperazines as potent, selective, and orally bioavailable oxytocin antagonists. 3. Synthesis, pharmacokinetics, and in vivo potency. J Med Chem 49:4159–4170PubMedCrossRefGoogle Scholar
  4. Chen MZ, Dewis ML, Kraut K, Merritt D, Reiber L, Trinnaman L, Da Costa NC (2009) 2, 5-Diketopiperazines (cyclic dipeptides) in beef: identification, synthesis, and sensory evaluation. J Food Sci 74:C100–C105PubMedCrossRefGoogle Scholar
  5. Chen YH, Liou SE, Chen CC (2004) Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur Food Res Technol 218:589–597CrossRefGoogle Scholar
  6. Cordero MM, Wesdemiotis C (1994) Tandem mass spectrometry of peptides: mechanistic aspects and structural information based on neutral losses. II—Tri- and larger peptides. Org Mass Spectrom 29:382–390CrossRefGoogle Scholar
  7. Deng LL, Zhang LD, Guo HJ, Jia LY, Pan Y, Yin H, Qi F (2010) VUV photon-induced ionization/dissociation of antipyrine and propyphenazone: mass spectrometric and theoretical insights. J Mass Spectrom 45:734–739PubMedCrossRefGoogle Scholar
  8. Fdhila F, Vazquez V, Sanchez JL, Riguera R (2003) DD-diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66:1299–1301PubMedCrossRefGoogle Scholar
  9. Fischer PM (2003a) The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr Protein Pept Sci 4:339–356PubMedCrossRefGoogle Scholar
  10. Fischer PM (2003b) Diketopiperazines in peptide and combinatorial chemistry. J Pept Sci 9:9–35PubMedCrossRefGoogle Scholar
  11. Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03. Wallingford, CTGoogle Scholar
  12. Furtado NAJC, Vessecchi R, Tomaz JC, Galembeck SE, Bastos JK, Lopes NP, Crotti AEM (2007) Fragmentation of diketopiperazines from Aspergillus fumigatus by electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Mass Spectrom 42:1279–1286PubMedCrossRefGoogle Scholar
  13. Guo HJ, Zhang LD, Deng L, Jia LY, Pan Y, Qi F (2010) Vacuum ultraviolet photofragmentation of sarcosine: photoionization mass spectrometric and theoretical insights. J Phys Chem A 114:3411–3417PubMedCrossRefGoogle Scholar
  14. Guo YC, Cao SX, Wei DH, Zong XK, Yuan XB, Tang MS, Zhao YF (2009a) Fragmentation of deprotonated cyclic dipeptides by electrospray ionization mass spectrometry. J Mass Spectrom 44:1188–1194PubMedCrossRefGoogle Scholar
  15. Guo YC, Cao SX, Zong XK, Liao XC, Zhao YF (2009b) ESI-MSn study on the fragmentation of protonated cyclic-dipeptides. Spectrosc Int J 23:131–139CrossRefGoogle Scholar
  16. Horton DA, Bourne GT, Smythe ML (2000) Exploring privileged structures: the combinatorial synthesis of cyclic peptides. Mol Divers 5:289–304CrossRefGoogle Scholar
  17. Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten DMF (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47:5713–5720PubMedCrossRefGoogle Scholar
  18. Hwang IK, Go VLW, Harris DM, Yip I, Kang KW, Song MK (2003) Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 5:317–324PubMedCrossRefGoogle Scholar
  19. Kanoh K, Kohno S, Katada J, Takahashi J, Uno I (1999) (−)-Phenylahistin arrests cells in mitosis by inhibiting tubulin polymerization. J Antibiot 52:134–141PubMedCrossRefGoogle Scholar
  20. Kanokmedhakul S, Kanokmedhakul K, Phonkerd N, Soytong K, Kongsaeree P, Suksamrarn A (2002) Anti mycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium globosum KMITL-N0802. Planta Med 68:834–836PubMedCrossRefGoogle Scholar
  21. Kanzaki H, Imura D, Nitoda T, Kawazu K (2000) Enzymatic conversion of cyclic dipeptides to dehydro derivatives that inhibit cell division. J Biosci Bioeng 90:86–89PubMedGoogle Scholar
  22. Kwon OS, Park SH, Yun BS, Pyun YR, Kim CJ (2000) Cyclo(Dehydroala-l-Leu), an alpha-glucosidase inhibitor from Penicillium sp F70614. J Antibiot 53:954–958PubMedCrossRefGoogle Scholar
  23. Leung SS, Grant DJW (1997) Solid state stability studies of model dipeptides: aspartame and aspartylphenylalanine. J Pharm Sci 86:64–71PubMedCrossRefGoogle Scholar
  24. Li YY, Zhang LD, Tian ZY, Wang J, Yang B, Qi F (2009) Experimental study of a Fuel-Rich premixed toluene flame at low pressure. Energy Fuels 23:1473–1485CrossRefGoogle Scholar
  25. Ling Y, Lifshitz C (1998) Energetics of the cyclo(Pro-Gly) cation fragmentation: a mass spectrometric study and theoretical calculations. J Mass Spectrom 33:25–34CrossRefGoogle Scholar
  26. Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932CrossRefGoogle Scholar
  27. Ng CY (2000) Vacuum ultraviolet photoionization and photoelectron studies in the new millennium: recent developments and applications. Int J Mass Spectrom 200:357–386CrossRefGoogle Scholar
  28. Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom STC (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anti Cancer Drugs 17:25–31PubMedCrossRefGoogle Scholar
  29. Pan Y, Yin H, Zhang TC, Guo HJ, Sheng LS, Qi F (2008a) The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Commun Mass Spectrom 22:2515–2520PubMedCrossRefGoogle Scholar
  30. Pan Y, Zhang TC, Hong X, Zhang YW, Sheng LS, Qi F (2008b) Fragment-controllable mass spectrometric analysis of organic compounds with an infrared laser desorption/tunable vacuum ultraviolet photoionization technique. Rapid Commun Mass Spectrom 22:1619–1623PubMedCrossRefGoogle Scholar
  31. Pan Y, Zhang LD, Guo HJ, Yin H, Qi F (2009a) Photoionization and dissociative photoionization study of cholesterol by IR laser desorption/tunable synchrotron VUV photoionization mass spectrometry. Chin J Chem Phys 129–133Google Scholar
  32. Pan Y, Zhang LD, Zhang TC, Guo HJ, Hong X, Sheng LS, Qi F (2009b) Intramolecular hydrogen transfer in the ionization process of alpha-alanine. Phys Chem Chem Phys 1189–1195Google Scholar
  33. Pan Y, Zhang LD, Guo HJ, Deng LL, Qi F (2010) Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations. Int Rev Phys Chem 29:369–401CrossRefGoogle Scholar
  34. Polce MJ, Ren D, Wesdemiotis C (2000) Special feature: commentary—dissociation of the peptide bond in protonated peptides. J Mass Spectrom 35:1391–1398PubMedCrossRefGoogle Scholar
  35. Ryan LAM, Dal Bello F, Arendt EK, Koehler P (2009) Detection and quantitation of 2, 5-diketopiperazines in wheat sourdough and bread. J Agric Food Chem 57:9563–9568PubMedCrossRefGoogle Scholar
  36. Sinha S, Srivastava R, De Clereq E, Singh RK (2004) Synthesis and antiviral properties of arabino and ribonucleosides of 1, 3-dideazaadenine, 4-nitro-1, 3-dideazapurine and diketopiperazine. Nucleosides Nucleotides Nucleic Acids 23:1815–1824PubMedCrossRefGoogle Scholar
  37. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW (2003) Anti-hyperglycemic activity of zinc plus cyclo (His-Pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med 228:1338–1345Google Scholar
  38. Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim YJ, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima N (2001) A new antibiotic CJ-17, 665 from Aspergillus ochraceus. J Antibiot 54:911–916PubMedCrossRefGoogle Scholar
  39. van der Merwe E, Huang D, Peterson D, Kilian G, Milne PJ, Van de Venter M, Frost C (2008) The synthesis and anticancer activity of selected diketopiperazines. Peptides 29:1305–1311PubMedCrossRefGoogle Scholar
  40. Wabnitz PA, Waugh RJ, Eckersley MA, Dua S, Blumenthal T, Bowie JH (1996) The negative ion mass spectra of deprotonated 2, 5-diketopiperazines. Int J Mass Spectrom Ion Process 154:193–201CrossRefGoogle Scholar
  41. Wang DX, Liang MT, Tian GJ, Lin H, Liu HQ (2002) A facile pathway to synthesize diketopiperazine derivatives. Tetrahedron Lett 43:865–867CrossRefGoogle Scholar
  42. Wolken JK, Yao C, Turecek F, Polce MJ, Wesdemiotis C (2007) Cytosine neutral molecules and cation-radicals in the gas-phase: Structures, energetics, ion chemistry, and neutralization-reionization mass spectrometry. Int J Mass Spectrom 267:30–42CrossRefGoogle Scholar
  43. Zhang LD, Pan Y, Guo HJ, Zhang TC, Sheng LS, Qi F, Lo PK, Lau KC (2009) Conformation-specific pathways of beta-alanine: a vacuum ultraviolet photoionization and theoretical study. J Phys Chem A 113:5838–5845PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Liyun Zhang
    • 1
    Email author
  • Liangyuan Jia
    • 1
  • Lidong Zhang
    • 1
  • Huijun Guo
    • 1
  • Zhongyue Zhou
    • 1
  • Junjie Weng
    • 1
  • Fei Qi
    • 1
  1. 1.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations