Skip to main content
Log in

Effect of double mutations K214/A–E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine protein kinase that is involved in several biological processes including insulin and Wnt signaling pathways. The Wnt signaling via FRAT-mediated displacement of axin inhibits GSK3β activity toward non-primed substrates without affecting its activity toward primed substrates. Herein, molecular dynamics simulation, molecular mechanics generalized Born/surface area (MM_GBSA) calculation, and normal mode analysis are performed to explore the structural influence of the double mutations K214/A–E215/Q of FRATide on the GSK3β–FRATide complex. The results reveal that the priming phosphate-binding site, the primed substrate-binding site, the alignment of the critical active site residues in the ATP-binding site, as well as the periodic open–closed conformational change of the ATP-binding site, which are critical for the catalytic activity of GSK3β, are negligibly influenced in the mutated system compared with the wild-type (WT) system. This indicates that FRATide does not inhibit the GSK3β activity toward primed substrates. Additionally, MM_GBSA calculation indicates that the less energy-favorable GSK3β–FRATide complex is observed in the mutant than in the WT complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

GSK3:

Glycogen synthase kinase 3

GS:

Glycogen synthase

APC:

Adenomatous polyposis coil protein

FRAT:

Advanced T-cell lymphomas protein

CDK2:

Cyclin-dependent kinase 2

MAP:

Mitogen-activated protein kinase

eIF2B:

Eukaryotic initialization factor 2B

CREB:

cAMP-responsive element-binding protein

Tau:

Microtubule-binding protein

GBP:

GSK3-binding protein

KE:

Lysine and glutamic acid

AQ:

Alanine and glutamine

NMA:

Normal mode analysis

MM_GBSA:

Molecular mechanics generalized born/surface area

PDB:

Protein data bank

RMSD:

Root mean-square deviation

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed  CAS  Google Scholar 

  • Ali A, Hoeflich KP, Woodgett JR (2001) Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev 101:2527–2540

    Article  PubMed  CAS  Google Scholar 

  • Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJB, Smith DG, Reith AD (2001) The structure of phosphorylated GSK-3β complexed with a peptide, FRATide, that inhibits β-catenin phosphorylation. Structure 9:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP (1999) The structure of phosphorylated P38γ is monomeric and reveals a conserved activation-loop conformation. Structure 7:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Brown NR, Noble MEM, Endicott JA (1999) The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1:438–443

    Article  PubMed  CAS  Google Scholar 

  • Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R (2010) Allosteric regulation of glycogen synthase kinase 3β: a theoretical study. Biochemistry 49:10890–10901

    Article  PubMed  CAS  Google Scholar 

  • Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling C, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang B, Wang S, Hayik A, Roitberg G, Seabra KF, Wong F, Paesani X, Wu S, Brozell V, Tsui H, Gohlke L, Yang C, Tan J, Mongan V, Hornak G, Cui P, Beroza DH, Mathews C, Schafmeister WSR, Kollman PA (2006) AMBER 9, University of California, San Francisco

  • Chou HY, Howng SL, Cheng TS, Hsiao YL, Lieu AS, Loh JK, Hwang SL, Lin CC, Hsu CM, Wang C, Lee CI, Lu PJ, Chou CK, Huang CY, Hong YR (2006) GSKIP is homologous to the Axin GSK3β interaction domain and functions as a negative regulator of GSK3β. Biochemistry 45:11379–11389

    Article  PubMed  CAS  Google Scholar 

  • Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  • Culbert AA, Brown MJ, Frame S, Hagen T, Cross DAE, Bax B, Reith AD (2001) GSK-3β inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau phosphorylation and β-catenin stabilization without elevation of glycogen synthase activity. FEBS Lett 507:288–294

    Article  PubMed  CAS  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH (2001) Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105:721–732

    Article  PubMed  CAS  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Maggie Y, Good VM, Thompson V, Dale TC, Pearl LH (2003) Structural basis for recruitment of glycogen synthase kinase 3β to the axin–APC scaffold complex. EMBO J 22:494–501

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10094

    Article  CAS  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem 24:1999–2012

    Article  PubMed  CAS  Google Scholar 

  • Eldar-Finkelman H, Licht-Murava A, Pietrokovaski S, Eisenstein M (2010) Substrate-competitive GSK-3 inhibitors—strategy and implications. Biochim Biophys Acta 1804:598–603

    PubMed  CAS  Google Scholar 

  • Emibi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 form rabbit skeletal muscle: separation from cylic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  Google Scholar 

  • Farr GH III, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D (2000) Interaction among GSK-3, GBP, Axin, and APC in Xenopus axis specification. J Cell Biol 148:691–701

    Article  PubMed  CAS  Google Scholar 

  • Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7:1321–1327

    Article  PubMed  CAS  Google Scholar 

  • Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RSB, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC (2002) Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem 277:2176–2185

    Article  PubMed  CAS  Google Scholar 

  • Grimes GA, Jope RS (2001) The multifaceted roles of glycogen synthasekinase 3βin cellular signaling. Prog Neurobiol 65:391–426

    Article  PubMed  CAS  Google Scholar 

  • Harwood AJ (2001) Regulation of GSK-3: a cellular multiprocessor. Cell 105:821–824

    Article  PubMed  CAS  Google Scholar 

  • Hay E, Faucheu C, Suc-Royer I, Touitou R, Stiot V, Vayssiere B, Baron R, Roman–Roman S, Rawadi G (2005) Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J Biol Chem 280:13616–13623

    Article  PubMed  CAS  Google Scholar 

  • Homeyer N, Horn AH, Lanig H, Sticht H (2006) AMBER force field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine and phosphohistidine. J Mol Model 12:281–289

    Article  PubMed  CAS  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W (2011a) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  PubMed  CAS  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W (2011b) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area method. II: the accuracy of ranking poses generated from docking. J Comput Chem 32:866–877

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of single potential function for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Shuanghong H, Chong L, Case DA (2000) Cheatham TEIII Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Azuara C, Koehl P, Delarue M (2006) NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res 34:W52–W56

    Article  PubMed  CAS  Google Scholar 

  • Lu SY, Jiang YJ, Zou JW, Wu TX (2011a) Molecular modeling and molecular dynamics simulation studies of the GSK3β/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3β substrates. J Chem Inf Model 51:1025–1036

    CAS  Google Scholar 

  • Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX (2011b) Role of bridging water molecules in GSK3β-inhibitor complexes: insights from QM/MM, MD, and molecular docking studies. J Comput Chem 32:1907–1918

    Article  PubMed  CAS  Google Scholar 

  • Lu SY, Jiang YJ, Zou JW, Wu TX (2011c) Dissection of the difference between the group I metal ions in inhibiting GSK3β: a computational study. Phys Chem Chem Phys 13:7014–7023

    Article  PubMed  CAS  Google Scholar 

  • Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX (2011d) Mechanism of kinase inactivation and nonbinding of FRATide to GSK3β due to K85M mutation: molecular dynamics simulation and normal mode analysis. Biopolymers 95:669–681

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872

    Article  PubMed  CAS  Google Scholar 

  • Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287:1606–1609

    Article  PubMed  CAS  Google Scholar 

  • Raaf J, Issinger OG, Niefind K (2009) First inactive conformation of CK2α, the catalytic subunit of protein kinase CK2. J Mol Biol 386:1212–1221

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3β to the APC-β–catenin complex and regulation of complex assembly. Science 272:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sun H, Jiang YJ, Yu QS, Luo CC, Zou JW (2008) Effect of mutation K85R on GSK3β: molecular dynamics simulation. Biochem Biophys Res Commun 377:962–965

    Article  PubMed  CAS  Google Scholar 

  • Tang XN, Lo CW, Chuang YC, Chen CT, Sun YC, Hong YR, Yang CN (2011) Prediction of the binding mode between GSK3β and a peptide derived from GSKIP using molecular dynamics simulation. Biopolymers 95:461–471

    Article  PubMed  CAS  Google Scholar 

  • ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3β reveals a primed phosphorylation mechanism. Nat Struct Biol 8:593–596

    Article  PubMed  CAS  Google Scholar 

  • Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P (1999) A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of Axin and β-catenin. FEBS Lett 458:247–251

    Article  PubMed  CAS  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  • Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294:625–629

    PubMed  CAS  Google Scholar 

  • Wu X, Brooks BR (2003) Self-guided Langevin dynamics simulation method. Chem Phys Lett 381:512–518

    Article  CAS  Google Scholar 

  • Yost C, Farr GH III, Pierce SB, Ferkey DM, Chen MM, Kimelman D (1998) GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Jiang Y, Zou J, Zhuang S, Jin H, Yu Q (2007) Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of GSK-3β–Axin complexes: role of packing hydrophobic residues. Proteins 67:941–949

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Jiang Y, Zou J, Yu Q, Zhao W (2009) Structural basis for the complete loss of GSK3β catalytic activity due to R96 mutation investigated by molecular dynamics study. Proteins 75:671–681

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Knighton DR, Teneyck LF, Karlsson R, Xuong NH, Taylor SS, Sowadski JM (1999) Crystal structure of the catalytic subunit of c-AMP-dependent protein kinase complexed with Mg/ATP and peptide inhibitor. Biochemistry 32:2154–2161

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No.20803063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, SY., Jiang, YJ., Zou, JW. et al. Effect of double mutations K214/A–E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis. Amino Acids 43, 267–277 (2012). https://doi.org/10.1007/s00726-011-1070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1070-4

Keywords

Navigation