Advertisement

Amino Acids

, Volume 43, Issue 1, pp 255–266 | Cite as

Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production

  • Meijuan Xu
  • Zhiming RaoEmail author
  • Wenfang Dou
  • Juan Yang
  • Jian Jin
  • Zhenghong XuEmail author
Original Article

Abstract

N-Acetyl-l-glutamate kinase (EC 2.7.2.8) is first committed in the specific l-arginine pathway of Corynebacterium sp. A limited increase of l-arginine production for the argB overexpression in the engineering C. creantum SYPA-CCB strain indicated that l-arginine feedback inhibition plays an influence on the l-arginine production. In this study, we have performed site-directed mutagenesis of the key enzyme (NAGK) and the three mutations (E19R, H26E and H268D) exhibited the increase of I 0.5 R efficiently. Thereby, the multi-mutated NAGKM3 (including E19R/H26E/H268D) was generated and its I 0.5 R of l-arginine of the mutant was increased remarkably, whereas the NAGK enzyme activities did not declined. To get a feedback-resistant and robust l-arginine producer, the engineered strains SYPA-CCBM3 were constructed. Introducing the argBM3 gene enabled the NAGK enzyme activity insensitive to the intracellular arginine concentrations resulted in an enhanced arginine biosynthesis flux and decreased formation of by-products. The l-arginine synthesis was largely enhanced due to the overexpression of the argBM3, which is resistant to feedback resistant by l-arginine. Thus l-arginine production could reach 45.6 g/l, about 41.7% higher compared with the initial strain. This is an example of up-modulation of the flux through the l-arginine metabolic pathway by deregulating the key enzyme of the pathway.

Keywords

N-Acetyl-l-glutamate kinase (NAGK) Feedback inhibition Site-directed mutagenesis Corynebacterium crenatum l-Arginine production 

Abbreviations

NAGK

N-Acetyl-l-glutamate kinase

Ccre_NAGK

N-Acetyl-l-glutamate kinase of Corynebacterium crenatum

WT

Wild-type

NAG

N-Acetyl-l-glutamate

I0.5R

Inhibition constant (the l-arginine concentration yields 50% inhibition)

EMS

Ethylmethane sulfonate

DCW

Dry cell weight

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Notes

Acknowledgments

This work was supported by the High-tech Research and Development Programs of China (2007AA02Z207), the National Basic Research Program of China (2007CB707804), the National Natural Science Foundation of China (30970056), the Program for New Century Excellent Talents in University (NCET-07-0380, NCET-10-0459), the Fundamental Research Funds for the Central Universities (JUSRP31001), the Program of Introducing Talents of Discipline to Universities (111-2-06) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. Benkert B, Quack N, Schreiber K, Jaensch L, Jahn D, Schobert M (2008) Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. Microbiol SGM 154:3053–3060. doi: 10.1099/mic.0.2008/018929-0 CrossRefGoogle Scholar
  2. Blombach B, Hans S, Bathe B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi: 10.1128/aem.01844-08 PubMedCrossRefGoogle Scholar
  3. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi: 10.1007/s00253-008-1444-z PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50(3):314–352. doi: 0146-0749/86/090314-39$02.00/0 PubMedGoogle Scholar
  6. Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen J-L, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213. doi: 10.1128/AEM.71.1.207-213.2005 PubMedCrossRefGoogle Scholar
  7. Fernandez-Murga ML, Gil-Ortiz F, Llacer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: Characterization of the arginine-sensitive N-acetyl-l-glutamate kinase. J Bacteriol 186(18):6142–6149. doi: 10.1128/jb.186.18.6142-6149.2004 PubMedCrossRefGoogle Scholar
  8. Fernandez-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-l-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190(8):3018–3025. doi: 10.1128/jb.01831-07 PubMedCrossRefGoogle Scholar
  9. Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Microbiol Monogr 5:219–257. doi: 10.1007/7171_2006_061 CrossRefGoogle Scholar
  10. Grillo MA, Colombatto S (2004) Arginine revisited: minireview article. Amino Acids 26(4):345–351. doi: 10.1007/s00726-004-0081-9 PubMedCrossRefGoogle Scholar
  11. Haas D, Kurer V, Leisinger T (1972) N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31(2):290–295. doi: 10.1111/j.1432-1033.1972.tb02531.x PubMedCrossRefGoogle Scholar
  12. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1–3):155–172. doi: 10.1016/s0168-1656(03)00149-4 PubMedCrossRefGoogle Scholar
  13. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210. doi: 10.1016/j.jbiotec.2008.12.005 PubMedCrossRefGoogle Scholar
  14. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35. doi: 10.1007/3-540-45989-8_1 PubMedGoogle Scholar
  15. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75(6):1635–1641. doi: 10.1128/aem.02027-08 PubMedCrossRefGoogle Scholar
  16. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25PubMedCrossRefGoogle Scholar
  17. Lu C-D (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biot 70(3):261–272. doi: 10.1007/s00253-005-0308-z CrossRefGoogle Scholar
  18. Park J, Lee S (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460. doi: 10.1016/j.copbio.2008.08.007 PubMedCrossRefGoogle Scholar
  19. Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356(3):695–713. doi: 10.1016/j.jmb.2005.11.079 PubMedCrossRefGoogle Scholar
  20. Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(Pt 1):99–108. doi: 10.1099/13500872-142-1-99 PubMedCrossRefGoogle Scholar
  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  22. Sun L, Wen X, Tan Y, Li H, Yang X, Zhao Y, Wang B, Cao Q, Niu C, Xi Z (2009) Site-directed mutagenesis and computational study of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase. Amino Acids 37(3):523–530. doi: 10.1007/s00726-009-0256-5 PubMedCrossRefGoogle Scholar
  23. Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45(5):362–367. doi: 10.1007/s00284-002-3728-3 PubMedCrossRefGoogle Scholar
  24. Utagawa T (2004) Production of arginine by fermentation. J Nutr 134:2854S–2867SPubMedGoogle Scholar
  25. Wendisch VF, Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Microbiol Monogr 5:219–257. doi: 10.1007/7171_2006_061 Google Scholar
  26. Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotech 16(7):999–1009Google Scholar
  27. Xu H, Dou WF, Xu HY, Zhang XM, Rao ZM, Shi ZP, Xu ZH (2009) A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43(1):41–51. doi: 10.1016/j.bej.2008.08.007 CrossRefGoogle Scholar
  28. Xu MJ, Rao ZM, Xu H, Lan CY, Dou WF, Zhang XM, Xu HY, Jin JA, Xu ZH (2011) Enhanced production of l-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol 163(6):707–719. doi: 10.1007/s12010-010-9076-z PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Laboratory of Pharmaceutical Engineering, School of Medicine and PharmaceuticsJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations