Amino Acids

, Volume 43, Issue 1, pp 245–253 | Cite as

Glycine and its N-methylated analogues cause pH-dependent membrane damage to enterotoxigenic Escherichia coli

  • D. VanhauteghemEmail author
  • G. P. J. Janssens
  • A. Lauwaerts
  • S. Sys
  • F. Boyen
  • I. D. Kalmar
  • E. Meyer
Original Article


The current study first investigates the emulsifying potential of glycine and its N-methylated derivatives N-methylglycine (sarcosine), N,N-dimethylglycine (DMG) and N,N,N-trimethylglycine (betaine) under varying pH conditions. Subsequently, the effect of these test compounds on the membrane integrity of enterotoxigenic Escherichia coli (ETEC) was evaluated. Oil in water emulsions containing each compound show that DMG is a more potent enhancer of emulsification than glycine, sarcosine and betaine under the conditions tested. Flow cytometry was used to investigate whether the emulsifying potential is associated with an effect on ETEC membrane integrity. The bacteria were exposed to each of the test compounds under varying pH conditions and membrane integrity was assessed using the LIVE/DEAD BacLight kit. Results show a membrane deteriorating effect caused by glycine, sarcosine and DMG, but not by betaine. This effect is pH- and time-dependent and has an apparent threshold at pH 9.0. Conventional plate counts confirmed concomitant changes in culturability of the membrane comprised bacteria.


Glycine Methylamine Flow cytometry Membrane integrity Emulsification Alkaline stress 



The present study was funded by Taminco NV (Belgium). The authors’ responsibilities were as follows D. Vanhauteghem conducted the experiments and collected all data, except for the MIC data which were collected by F. Boyen. S. Sys performed statistical analysis and D. Vanhauteghem wrote the manuscript. E. Meyer., I.D. Kalmar, A. Lauwaerts, S. Sys and G.P.J. Janssens revised the manuscript. E. Meyer and G.P.J. Janssens supervised D. Vanhauteghem.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

726_2011_1068_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 55 kb)
726_2011_1068_MOESM2_ESM.pdf (110 kb)
Supplementary material 2 (PDF 109 kb)
726_2011_1068_MOESM3_ESM.pdf (69 kb)
Supplementary material 3 (PDF 68 kb)


  1. Abouseoud M, Yataghene A, Amrane A, Maachi R (2010) Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J Hazard Mater 180:131–136PubMedCrossRefGoogle Scholar
  2. Berney M, Weilenmann H-U, Egli T (2006) Flow cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology 152:1719–1729PubMedCrossRefGoogle Scholar
  3. Berney M, Hammes F, Bosschard F, Weilenmann H, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microb 73:3283–3290CrossRefGoogle Scholar
  4. Clapés P, Infante MR (2002) Amino acid-based surfactants: enzymatic analysis, properties and potential applications. Biocatal Biotransfor 20:215–233CrossRefGoogle Scholar
  5. CLSI (2008) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Approved standard, 3rd ed., M31-A3. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  6. Cools A, Maes D, Buyse J, Kalmar ID, Vandermeiren J-A, Janssens GPJ (2010) Effect of N, N-dimethylglycine supplementation in parturition feed for sows on metabolism, nutrient digestibility and reproductive performance. Animal 4:2004–2011PubMedCrossRefGoogle Scholar
  7. Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Micriobiol Rev 53:121–147Google Scholar
  8. Culham DE, Lu A, Jishage M, Krogfelt KA, Ishihama A, Wood JM (2001) The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProU and other systems. Microbiology 147:1657–1670PubMedGoogle Scholar
  9. Eklund M, Bauer E, Wamatu J, Mosenthin R (2005) Potential nutritional and physiological functions of betaine in livestock. Nutr Res Rev 18:31–48PubMedCrossRefGoogle Scholar
  10. Eklund M, Mosenthin R, Piepho HP (2006a) Effects of betaine and condensed molasses solubles on ileal and total tract nutrient digestibilities in piglets. Acta Agr Scand A-An 56:83–90Google Scholar
  11. Eklund M, Mosenthin R, Tafaj M, Wamatu J (2006b) Effects of betaine and condensed molasses solubles on nitrogen balance and nutrient digestibility in piglets fed diets deficient in methionine and low in compatible osmolytes. Arch Anim Nutr 60:289–300PubMedCrossRefGoogle Scholar
  12. Fairbrother JM, Nadeau E, Gyles CL (2005) Escherichia coli in post weaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6:17–39PubMedCrossRefGoogle Scholar
  13. Fan MZ, Adeola O, Asem EK (1999) Characterization of brush border membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine. J Nutr Biochem 10:299–305PubMedCrossRefGoogle Scholar
  14. Guan J-Q, Tung C-H (1998) Dynamics of fluorescence quenching in pyrene in novel micelles of the zwitterionic betaine surfactant N-(3-dodecyloxy-2-hydroxypropyl)-N, N-dimethylglycine. J Colloid Interf Sci 208:90–95CrossRefGoogle Scholar
  15. Kalmar ID, Cools A, Buyse J, Roose P, Janssens GPJ (2010a) Dietary N, N-dimethylglycine supplementation improves nutrient digestibility and attenuates pulmonary hypertension syndrome in broilers. J Anim Physiol An N 94:e339–e347CrossRefGoogle Scholar
  16. Kalmar ID, Cools A, Verstegen MWA, Huyghebaert G, Buyse J, Roose P, Janssens GPJ (2010b) Dietary supplementation with dimethylglycine affects broiler performance and plasma metabolites depending on dose and dietary fatty acid profile. J Anim Physiol An N 95:146–153CrossRefGoogle Scholar
  17. Kalmar ID, Verstegen MWA, Maenner K, Zentek J, Meulemans G, Janssens GPJ (2011) Tolerance and safety evaluation of N,N-dimethylglycine (DMG), a naturally occurring organic compound, as a feed additive in broiler diets. Brit J Nutr. doi: 10.1017/S0007114511004752
  18. Kitko RD, Wilks JC, Garduque GM, Slonczewski JL (2010) Osmolytes contribute to pH homeostasis of Escherichia coli. PLoS ONE 5(4):e10078. doi: 10.1371/journal.pone.0010078 PubMedCrossRefGoogle Scholar
  19. Kraft ML, Moore JS (2001) Surfactant-induced lysis of lipid-modified microgels. J Am Chem Soc 123:12921–12922PubMedCrossRefGoogle Scholar
  20. Lallès JP (2010) Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 68:323–332PubMedCrossRefGoogle Scholar
  21. Ly A, Henderson J, Lu A, Culham DE, Wood JM (2004) Osmoregulatory systems of Escherichia coli: identification of betaine-carnitine-choline transporter family member BetU and distributions of BetU and trkG among pathogenic and nonpathogenic isolates. J Bacteriol 180:296–306CrossRefGoogle Scholar
  22. MacMillan SV, Alexander DA, Culham DE, Kunte HJ, Marshall EV, Rochon D, Wood JM (1999) The ion coupling and organic substrate specifities of osmoregulatory transporter ProP in Escherichia coli. Biochim Biophys Acta 1420:30–40PubMedCrossRefGoogle Scholar
  23. Matthews JO, Southern LL, Higbie AD, Persica MA, Bidner TD (2001) Effects of betaine on growth, carcass characteristics, pork quality, and plasma metabolites of finishing pigs. J Anim Sci 79:722–728PubMedGoogle Scholar
  24. Maurer LM, Yohannes E, Bondurant SS, Radmecher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319PubMedCrossRefGoogle Scholar
  25. Metzler-Zebeli BU, Ratriyanto A, Jezierny D, Sauer N, Eklund M, Mosenthin R (2009) Effects of betaine, organic acids and inulin as single feed additives or in combination on bacterial populations in the gastrointestinal tract of weaned piglets. Arch Anim Nutr 63:427–441CrossRefGoogle Scholar
  26. Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y (2009) Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol 587:3651–3663PubMedCrossRefGoogle Scholar
  27. Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmatic membrane fluidity under environmental stress. Prog Biophys Mol Bio 95:60–82CrossRefGoogle Scholar
  28. Nelson ML, Grier MC, Barbaro SE, Ismail MY (2009) Polyfunctional antibiotics affecting bacterial membrane dynamics. Antiinfective Agents Med Chem. 8:3–16Google Scholar
  29. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochem Biophys Acta 1717:67–88PubMedCrossRefGoogle Scholar
  30. Peddie BA, Wood JE, Lever M, Happer DAR, de Zwart F, Chambers ST (2003) Assessment of antimicrobial activity of hydrophilic betaines in osmotically stressed bacteria. Antonie van Leeuwenhoek 83:175–181PubMedCrossRefGoogle Scholar
  31. Ratriyanto A, Mosenthin R, Jezierny D, Eklund M (2010) Effect of graded levels of dietary betaine on ileal and total tract nutrient digestibilities and intestinal bacterial metabolites in piglets. J Anim Physiol An N 94:788–796CrossRefGoogle Scholar
  32. Sánchez L, Mitjans M, Infante MR, García MT, Manresa MA, Vinardell MP (2007) The biological properties of lysine-derived surfactants. Amino Acids 32:133–136PubMedCrossRefGoogle Scholar
  33. Smirnova G, Oktyabrsky O (1995) Betaine modulates intracellular thiol and potassium levels in Escherichia coli in medium with high osmolarity and alkaline pH. Arch Microbiol 163:76–78PubMedCrossRefGoogle Scholar
  34. Snoeck V, Cox E, Verdonck F, Joensuu JJ, Goddeeris BM (2004) Influence of porcine intestinal pH and gastric digestion on antigenicity of F4 fimbriae for oral immunization. Vet Microbiol 98:45–53PubMedCrossRefGoogle Scholar
  35. Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184:4246–4258PubMedCrossRefGoogle Scholar
  36. Sträuber H, Müller S (2010) Viability states of bacteria — Specific mechanisms of selected probes. Cytometry 77A:623–634CrossRefGoogle Scholar
  37. Tøndervik A, Strøm AR (2007) Membrane topology and mutational analysis of the osmotically activated BetT choline transporter of Escherichia coli. Microbiology 153:803–813PubMedCrossRefGoogle Scholar
  38. Walker RI, Steele D, Aguado T, the ad hoc ETEC Technical Expert Committee (2007) Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic Escherichia coli (ETEC) disease. Vaccine 25:2545–2566PubMedCrossRefGoogle Scholar
  39. Wang Y, Wang L, Sun Y, Chen Y, Zhu L, Guo L, Luo B, Wang H (2007) Disrupted ompC causes osmosis sensitivity of Escherichia coli in alkaline medium. J Genet Genomics 34:1131–1138PubMedCrossRefGoogle Scholar
  40. Wu WU, Hettiarachchy NS, Qi M (1998) Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. J Am Oil Chem Soc 75:845–850CrossRefGoogle Scholar
  41. Xia WJ, Onyuksel H (2000) Mechanistic studies on surfactant-induced membrane permeability enhancement. Pharm Res 17:612–618PubMedCrossRefGoogle Scholar
  42. Yokoyama S, Kouchi J, Tabohashi T, Harusawa F, Yamaguchi A, Sakai H, Abe M (2001) Emulsifying potency of new amino acid-type surfactant (II): stable water-in-oil (W/O) emulsions containing 85 wt% inner water phase. Chem Pharm Bull 49:1331–1335PubMedCrossRefGoogle Scholar
  43. Zajic JE, Panchal CJ (1976) Bio-emulsifiers. Crit Rev Microbiol 5:39–66CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Vanhauteghem
    • 1
    • 2
    Email author
  • G. P. J. Janssens
    • 1
  • A. Lauwaerts
    • 3
  • S. Sys
    • 4
  • F. Boyen
    • 5
  • I. D. Kalmar
    • 1
  • E. Meyer
    • 2
  1. 1.Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  2. 2.Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  3. 3.Taminco N.VGhentBelgium
  4. 4.Department of Internal Medicine and Clinical Biology of Large Animals, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  5. 5.Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations