Amino Acids

, Volume 43, Issue 1, pp 207–218 | Cite as

Design, conformational studies and analysis of structure–function relationships of PTH (1–11) analogues: the essential role of Val in position 2

  • A. CaporaleEmail author
  • L. Gesiot
  • M. Sturlese
  • A. Wittelsberger
  • S. Mammi
  • E. Peggion
Original Article


The N-terminal 1–34 segment of parathyroid hormone (PTH) is fully active in vitro and in vivo and it elicits all the biological responses characteristic of the native intact PTH. Recent studies reported potent helical analogues of the PTH (1–11) with helicity-enhancing substitutions. This work describes the synthesis, biological activity, and conformational studies of analogues obtained from the most active non-natural PTH (1–11) peptide H-Aib-Val-Aib-Glu-Ile-Gln-Leu-Nle-His-Gln-Har-NH2; specifically, the replacement of Val in position 2 with d-Val, l-(αMe)-Val and N-isopropyl-Gly was studied. The synthesized analogues were characterized functionally by in-cell assays and their structures were determined by CD and NMR spectroscopy. To clarify the relationship between the structure and activity, the structural data were used to generate a pharmacophoric model, obtained overlapping all the analogues. This model underlines the fundamental functional role of the side chain of Val2 and, at the same time, reveals that the introduction of conformationally constrained Cα-tetrasubstituted α-amino acids in the peptides increases their helical content, but does not necessarily ensure significant biological activity.


PTH NMR analysis Pharmacophoric model αMeVal Conformational analogues Structure/activity analysis 



α-Aminoisobutyric acid


Circular dichroism










1-[Bis(dimethylamino)methylene]-1H-7-azabenzotriazolium hexafluorophosphate 3-oxide


1-[Bis(dimethylamino)methylene]-1H-benzotriazolium hexafluorophosphate 3-oxide












Parathyroid hormone


Trifluoroacetic acid









The authors thank MIUR, Ministry of Education and University of Italy, for financial support, Dr. Barbara Biondi for her kind help in mass analyses and in the synthetic approach, Dr. Nereo Fiori for his initial NMR analyses and Prof. Stefano Moro and the Molecular Modelling section of the Department of Pharmaceutical Sciences (Padova, Italy) for computational support. In particular, the authors want to thank Prof. Claudio Toniolo for encouragement and helpful discussions. The authors declare that they have no conflict of interest.

Supplementary material

726_2011_1065_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2467 kb)


  1. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179PubMedCrossRefGoogle Scholar
  2. Barazza A, Wittelsberger A, Fiori N, Schievano E, Mammi S, Toniolo C, Alexander JM, Rosenblatt M, Peggion E, Chorev M (2005) Truncation of the carboxyl-terminal region of the rat parathyroid hormone (PTH)-PTH-related peptide receptor enhances PTH stimulation of adenylyl cyclase but not phospholipase C. J Pept Res 65:23–35PubMedCrossRefGoogle Scholar
  3. Bax A, Davis DG (1985a) Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson 63:207–213CrossRefGoogle Scholar
  4. Bax A, Davis DG (1985b) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360CrossRefGoogle Scholar
  5. Bui TTT, Formaggio F, Crisma M, Monaco V, Toniolo C, Hussain R, Siligardi G (2000) TOAC: a useful Cα-tetrasubstituted α-amino acid for peptide conformational analysis by CD spectroscopy in the visible region. Part I. J Chem Soc Perkin Trans 2:1043–1046Google Scholar
  6. Cali JJ, Niles A, Valley MP, O’Brien MA, Riss TL, Shultz J (2008) Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 4:103–120PubMedCrossRefGoogle Scholar
  7. Caporale A, Fiori N, Schievano E, Mammi S, Peggion E, Chorev M, Wittelsberger A (2006) PTH-like peptides - EP 1619204 A1. US Patent 7,132,394, 25 Jan 2006Google Scholar
  8. Caporale A, Biondi B, Schievano E, Wittelsberger A, Mammi S, Peggion E (2009a) Structure-function relationship studies of PTH (1–11) analogues containing d-amino acids. Eur J Pharmacol 611:1–7PubMedCrossRefGoogle Scholar
  9. Caporale A, Fiori N, Schievano E, Wittelsberger A, Mammi S, Chorev M, Peggion E (2009b) Structure-function relationship study of parathyroid hormone (1–11) analogues containing d-AA. In: Del Valle S, Escher E, Lubell WD (eds) Peptides for youth. American Peptide Society, Montreal, pp 113–114CrossRefGoogle Scholar
  10. Caporale A, Sturlese M, Schievano E, Mammi S, Peggion E (2010a) Synthesis and structural studies of new analogues of PTH (1–11) containing Cα-tetra-substituted amino acids in position 8. Amino Acids 39:1369–1379PubMedCrossRefGoogle Scholar
  11. Caporale A, Schievano E, Peggion E (2010b) Peptide–peptoid hybrids based on (1–11)-parathyroid hormone analogs. J Pept Sci 16:480–485PubMedGoogle Scholar
  12. Carpino LA, El-Faham A (1994) Effect of tertiary bases on O-benzotriazolyluronium salt-induced peptide segment coupling. J Org Chem 59:695–698CrossRefGoogle Scholar
  13. Carpino LA, Mansour EME, Sadat-Aalaee D (1991) tert-Butyloxycarbonyl and benzyloxycarbonyl amino acid fluorides. New stable rapid-acting acylating agents for peptide synthesis. J Org Chem 56:2611–2614CrossRefGoogle Scholar
  14. Carpino LA, El-Faham A, Minor CA, Albericio F (1994) Advantageous applications of azabenzotriazole (triazolopyridine)-based coupling reagents to solid-phase peptide synthesis. J Chem Soc Chem Commun 2:201–203Google Scholar
  15. Carpino LA, El-Faham A, Albericio F (1995) Efficiency in peptide coupling: 1-hydroxy-7-azabenzotriazole versus 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine. J Org Chem 60:3561–3564CrossRefGoogle Scholar
  16. Carpino LA, Ionescu D, El-Faham A, Henklein P, Wenschuh H, Bienert M, Beyermann M (1998) Protected amino acid chlorides vs protected amino acid fluorides: reactivity comparisons. Tetrahedron Lett 39:241–244CrossRefGoogle Scholar
  17. Castro M, Nikolaev VO, Palm D, Lohse MJ, Vilardaga JP (2005) Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc Natl Acad Sci USA 102:16084–16089PubMedCrossRefGoogle Scholar
  18. Crisma M, Bonora GM, Toniolo C, Benedetti E, Bavoso A, Di Blasio B, Pavone V, Pedone C (1988) Structural versatility of peptides from Cα,α-dialkylated glycines: an infrared absorption and 1H NMR. study of homopeptides from 1-aminocyclopentane-1-carboxylic acid. J Biol Macromol 10:300–304CrossRefGoogle Scholar
  19. Crisma M, Bisson W, Formaggio F, Broxterman QB, Toniolo C (2002) Factors governing 310-helix vs α-helix formation in peptides: percentage of Cα-tetrasubstituted α-amino acid residues and sequence dependence. Biopolymers 64:236–245PubMedCrossRefGoogle Scholar
  20. Crisma M, Saviano M, Moretto A, Broxterman QB, Kaptein B, Toniolo C (2007) Peptide α/310 -helix dimorphism in the crystal state. J Am Chem Soc 129:15471–15473PubMedCrossRefGoogle Scholar
  21. Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ (2008) Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol 22:156–166PubMedCrossRefGoogle Scholar
  22. Fan F, Wood KV (2007) Bioluminescent assay for high-throughput screening. Assay Drug Dev Technol 5:127–136PubMedCrossRefGoogle Scholar
  23. Frelinger AL, Zull JE (1984) Oxidized forms of parathyroid hormone with biological activity. Separation and characterization of hormone forms oxidized at methionine 8 and methionine 18. J Biol Chem 259:5507–5513PubMedGoogle Scholar
  24. Gante J (1994) Peptidomimetics: tailored enzyme inhibitors. Angew Chem Int Ed 33:1699–1720CrossRefGoogle Scholar
  25. Gardella TJ, Jüppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 5:210–217CrossRefGoogle Scholar
  26. Gensure RC, Gardella TJ, Jüppner H (2005) Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 328:666–678PubMedCrossRefGoogle Scholar
  27. Grauer AA, Cabrele C, Zabel M, König B (2009) Stable right- and left-handed peptide helices containing Cα-tetrasubstituted α-amino acids. J Org Chem 74:3718–3726PubMedCrossRefGoogle Scholar
  28. Griesinger C, Otting G, Wüthrich K, Ernst RR (1988) Clean TOCSY for proton spin system identification in macromolecules. J Am Chem Soc 110:7870–7872CrossRefGoogle Scholar
  29. Han SY, Kim YA (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60:2447–2467CrossRefGoogle Scholar
  30. Hirschmann R (1991) Medicinal chemistry in the golden age of biology: lessons from steroid and peptide research. Angew Chem Int Ed 30:1278–1301CrossRefGoogle Scholar
  31. Hoare S, Gardella TJ, Usdin T (2001) Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor: effect of receptor G-protein interaction on the binding mechanism and the receptor conformation. J Biol Chem 276:7741–7753PubMedCrossRefGoogle Scholar
  32. Hong D-P, Hoshino M, Kuboi R, Goto Y (1999) Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J Am Chem Soc 121:8427–8433CrossRefGoogle Scholar
  33. Hruby VJ, Li G, Haskell-Luevano C, Shenderovich M (1997) Design of peptides, proteins, and peptidomimetics in χ space. Biopolymers 43:219–266PubMedCrossRefGoogle Scholar
  34. Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF, Hock J, Potts JT, Kronenberg HM, Segre GV (1991) A G-protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024–1026PubMedCrossRefGoogle Scholar
  35. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637PubMedCrossRefGoogle Scholar
  36. Kaul R, Balaram P (1999) Stereochemical control of peptide folding. Bioorg Med Chem 7:105–117PubMedCrossRefGoogle Scholar
  37. Kessler H, Diefenbach B, Finsinger F, Geyer A, Gurrath M, Goodman SL, Hölzemann G, Haubner R, Jonczyk A, Müller G, Graf von Roedern E, Wermuth J (1995) Design of superactive and selective integrin receptor antagonists containing the RGD sequence. Lett Pept Sci 2:155–160CrossRefGoogle Scholar
  38. Kolakowski LF (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2:1–7PubMedGoogle Scholar
  39. Kronenberg H, Abou-Samra A, Bringhurst F, Gardella T, Jüppner H, Segre G (1997) In: Thakker R (ed) Genetics of endocrine and metabolic disorders. Chapman & Hall, London, pp 389–420Google Scholar
  40. Kubasik M, Blom A (2005) Acceleration of short helical peptide conformational dynamics by trifluoroethanol in an organic solvent. ChemBioChem 6:1187–1190PubMedCrossRefGoogle Scholar
  41. Locardi E, Mammi S, Peggion E, Monaco V, Formaggio F, Crisma M, Toniolo C, Bodo B, Rebuffat S, Kamphuis J, Broxterman Q (1998) Conformation and membrane activity of an analogue of the peptaibol antibiotic trichogin GA IV with a lipophilic amino acid at the N terminus. J Pept Sci 4(6):389–399PubMedCrossRefGoogle Scholar
  42. Maity P, König B (2008) Enantio- and diastereoselective syntheses of cyclic Cα-tetrasubstituted α-amino acids and their use to induce stable conformations in short peptides. Biopolymers (Pept Sci) 90:8–27CrossRefGoogle Scholar
  43. Monticelli L, Mammi S, Mierke DF (2002) Molecular characterization of a ligand-tethered parathyroid hormone receptor. Biophys Chem 95:165–172PubMedCrossRefGoogle Scholar
  44. Moretto A, Formaggio F, Kaptein B, Broxterman QB, Wu L, Keiderling TA, Toniolo C (2008) First homo-peptides undergoing a reversible 310-helix/α-helix transition: critical main-chain length. Biopolymers (Pept Sci) 90:567–574CrossRefGoogle Scholar
  45. Obrecht D, Bohdal U, Broger C, Bur D, Lehmann C, Ruffieux R, Schönholzer P, Spiegler C, Müller K (1995) l-Phenylalanine cyclohexylamide: a simple and convenient auxiliary for the synthesis of optically pure α,α-disubstituted (R)- and (S)-amino acids. Helv Chim Acta 78:563–580CrossRefGoogle Scholar
  46. Perczel A, Hollosi M, Foxman B, Fasman GD (1991) Conformational analysis of pseudocyclic hexapeptides based on quantitative circular dichroism (CD), NOE, and X-ray data. The pure CD spectra of type I and type II beta-turns. J Am Chem Soc 113:9772–9784CrossRefGoogle Scholar
  47. Pines M, Adams AE, Stueckle S, Bessalle R, Rashti-Behar V, Chorev M, Rosenblatt M, Suva LJ (1994) Generation and characterization of human kidney cell lines stably expressing recombinant human PTH/PTHrP. Endocrinology 135:1713–1716PubMedCrossRefGoogle Scholar
  48. Pioszak AA, Parker NR, Gardella TJ, Xu HE (2009) Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem 24:28382–28391CrossRefGoogle Scholar
  49. Polese A, Formaggio F, Crisma M, Valle G, Toniolo C, Bonora GM, Broxterman QB, Kamphuis J (1996) Peptide helices as rigid molecular rulers: a conformational study of isotactic homopeptides from α-methyl-α-isopropylglycine, [L-(αMe)Val]n. Chem Eur J 2:1104–1111CrossRefGoogle Scholar
  50. Potts JT, Gardella TJ (2008) Progress, paradox, and potential: parathyroid hormone research over five decades. Ann NY Acad Sci 1117:196–208CrossRefGoogle Scholar
  51. Rance M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K (1983) Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117:479–485PubMedCrossRefGoogle Scholar
  52. Rosenblatt M, Goltzmann D, Keutmann HT, Tregear GW, Potts JT (1976) Chemical and biological properties of synthetic, sulfur-free analogues of parathyroid hormone. J Biol Chem 251:159–164PubMedGoogle Scholar
  53. Santini A, Barone V, Bavoso A, Benedetti E, Di Blasio E, Fraternali F, Lelj F, Pavone V, Pedone C, Crisma M, Bonora GM, Toniolo C (1988) Structural versatility of peptides from Cα, α-dialkylated glycines: a conformational energy calculation and X-ray diffraction study of homopeptides from 1-aminocyclopentane-1-carboxylic acid. Int J Biol Macromol 10:292–299CrossRefGoogle Scholar
  54. Scian M, Marin M, Bellanda M, Tou L, Alexander JM, Rosenblatt M, Chorev M, Peggion E, Mammi S (2006) Backbone dynamics of human parathyroid hormone (1–34): flexibility of the central region under different environmental conditions. Biopolymers 84:147–160PubMedCrossRefGoogle Scholar
  55. Shimizu M, Potts JT, Gardella TJ (2000) Minimization of parathyroid hormone. Novel amino-terminal parathyroid hormone fragments with enhanced potency in activating the type-1 parathyroid hormone receptor. J Biol Chem 275:21836–21843PubMedCrossRefGoogle Scholar
  56. Shimizu M, Carter PH, Khatri A, Potts JT, Gardella TJ (2001a) Enhanced activity in parathyroid hormone-(1–14) and -(1–11): novel peptides for probing ligand–receptor interactions. Endocrinology 142:3068–3074PubMedCrossRefGoogle Scholar
  57. Shimizu N, Guo J, Gardella TJ (2001b) Parathyroid hormone (1–14) and (1–11) analogs conformationally constrained by α-aminoisobutyric acid mediate full agonist responses via the juxtamembrane region of the PTH 1 receptor. J Biol Chem 276:49003–49012PubMedCrossRefGoogle Scholar
  58. Shimizu N, Shimizu M, Tsang JC, Petroni BD, Khatri A, Potts JT, Gardella TJ (2002) Residue 19 of the parathyroid hormone (PTH) modulates ligand interaction with the juxtamembrane region of the PTH-1 receptor. Biochemistry 41:13224–13233PubMedCrossRefGoogle Scholar
  59. Shimizu M, Dean T, Khatri A, Gardella TJ (2004) Amino-terminal parathyroid hormone fragment analogs containing α, α-di-alkyl amino acids at positions 1 and 3. J Bone Miner Res 19:2078–2086PubMedCrossRefGoogle Scholar
  60. Shimizu N, Dean T, Tsang JC, Khatri A, Potts JT, Gardella TJ (2005) Novel parathyroid hormone (PTH) antagonists that bind to the juxtamembrane portion of the PTH/PTH-related protein receptor. J Biol Chem 280:1797–1807PubMedCrossRefGoogle Scholar
  61. Toniolo C (1989) Structure of conformationally constrained peptides: from model compounds to bioactive peptides. Biopolymers 28:247–257PubMedCrossRefGoogle Scholar
  62. Toniolo C, Polese A, Formaggio F, Crisma M, Kamphuis J (1996) Circular dichroism spectrum of a peptide 310-helix. J Am Chem Soc 118:2744–2745CrossRefGoogle Scholar
  63. Toniolo C, Crisma M, Formaggio F, Peggion C (2001) Control of peptide conformation by the Thorpe–Ingold effect (Cα-tetrasubstitution). Biopolymers (Pept Sci) 60:396–419CrossRefGoogle Scholar
  64. Toniolo C, Formaggio F, Tognon S, Broxterman QB, Kaptein B, Huang R, Setnicka V, Keiderling TA, McColl IH, Hecht L, Barron LD (2004) The complete chirospectroscopic signature of the peptide 310-helix in aqueous solution. Biopolymers 75:32–45PubMedCrossRefGoogle Scholar
  65. Torras J, Zanuy D, Crisma M, Toniolo C, Betran O, Alemán C (2008) Correlation between symmetry breaker position and the preferences of conformationally constrained homopeptides: a molecular dynamics investigation. Biopolymer (Pept Sci) 90:695–706CrossRefGoogle Scholar
  66. Tsomaia N, Pellegrini M, Hyde K, Gardella TJ, Mierke DF (2004) Toward parathyroid hormone minimization: conformational studies of cyclic PTH (1–14) analogues. Biochemistry 43:690–699PubMedCrossRefGoogle Scholar
  67. Vilardaga JP, Romero G, Friedman PA, Gardella JT (2011) Molecular basis of parathyroid hormone receptor signalling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci. doi: 10.1007/s00018-010-0465-9
  68. Wenschuh H, Beyermann M, Krause E, Brudel M, Winter R, Schümann M, Carpino LA, Bienert M (1994) Fmoc amino acid fluoride: convenient reagents for the solid-phase assembly of peptides incorporating sterically hindered residues. J Org Chem 59:3275–3280CrossRefGoogle Scholar
  69. Willisch H, Hiller W, Hemmasi B, Bayer E (1991) Synthesis, properties and crystal structure of the tripeptide boc-l-prolyl-l-propargylglycyl-glycine methylester. Tetrahedron 47:3947–3958CrossRefGoogle Scholar
  70. Wittelsberger A, Corich M, Thomas BE, Lee BK, Barazza A, Czodrowski P, Mierke DF, Chorev M, Rosenblatt M (2006) The mid region of parathyroid hormone (1–34) serves as functional docking domain in receptor activation. Biochemistry 45:2027–2034PubMedCrossRefGoogle Scholar
  71. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, WeinheimGoogle Scholar
  72. Yang JT, Wu CS, Martinez HM (1986) Calculation of protein conformation from circular dichroism. Methods Enzymol 130:208–269PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Caporale
    • 1
    Email author
  • L. Gesiot
    • 2
  • M. Sturlese
    • 2
  • A. Wittelsberger
    • 3
  • S. Mammi
    • 2
  • E. Peggion
    • 2
  1. 1.Department of Molecular Sciences and NanosystemsUniversità Ca’ Foscari di VeneziaVeniceItaly
  2. 2.Department of Chemical SciencesInstitute of Biomolecular Chemistry, CNR, University of PadovaPadovaItaly
  3. 3.Department of PhysiologyTufts University School of MedicineBostonUSA

Personalised recommendations