Skip to main content
Log in

Helix formation and capping energetics of arginine analogs with varying side chain length

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Arginine (Arg) has been used for recognizing negatively charged biological molecules, cell penetration, and oligosaccharide mass signal enhancement. The versatility of Arg has inspired the need to develop Arg analogs and to research the structural effects of incorporating Arg analogs. Accordingly, we investigated the effect of Arg side chain length on helix formation by studying 12 Ala-based peptides containing the Arg analogs (S)-2-amino-6-guanidino-hexanoic acid (Agh), (S)-2-amino-4-guanidinobutyric acid (Agb), and (S)-2-amino-3-guanidinopropionic acid (Agp). Solid phase guanidinylation with orthogonal protection strategies was necessary to synthesize Agb- and Agp-containing peptides using Fmoc-based chemistry. The fraction helix for the peptides was determined by circular dichroism spectroscopy, and used to derive the statistical mechanical parameters and energetics for N-capping, C-capping, and helix propagation (propensity). All four Arg analogs were unfavorable for N-capping. The C-cap parameter followed the trend Agp < Agb < Arg < Agh, showing more favorable C-cap energetics with increasing side chain length. In contrast, helix propensity followed the trend Agp < Agb < Arg > Agh, highlighting the uniqueness of the Arg side chain length in helix formation. Molecular mechanics calculations and a survey on protein structures were consistent with the experimental results. Furthermore, calculations and survey both showed that the g– conformation for the χ1 dihedral was present for the first two residues at the N-terminus of helices, but not favored in the center or C-terminus of helices due to sterics. These results should serve as the foundation for developing Arg-related bioactive compounds and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argos P (1988) An investigation of protein subunit and domain interfaces. Protein Eng 2:101–113

    Article  PubMed  CAS  Google Scholar 

  • Aurora R, Rose GD (1998) Helix capping. Protein Sci 7:21–38

    PubMed  CAS  Google Scholar 

  • Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201(3):601–619

    Article  PubMed  CAS  Google Scholar 

  • Baumgart S, Lindner Y, Kühne R, Oberemm A, Wenschuh H, Krause E (2004) The contributions of specific amino acid side chains to signal intensities of peptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 18:863–868

    Article  PubMed  CAS  Google Scholar 

  • Blagdon DE, Goodman M (1975) Mechanisms of protein and polypeptide helix initiation. Biopolymers 14:241–245

    Article  PubMed  CAS  Google Scholar 

  • Blaum BS, Deakin JA, Johansson CM, Herbert AP, Barlow PN, Lyon M, Uhrin D (2010) Lysine and arginine side chains in glycosaminoglycan–protein complexes investigated by NMR, cross-linking, and mass spectrometry: a case study of the factor H-heparin interaction. J Am Chem Soc 132:6374–6381

    Article  PubMed  CAS  Google Scholar 

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti P (1994) Conformations of arginine and lysine side chains in association with anions. Int J Peptide Protein Res 43:284–291

    Article  CAS  Google Scholar 

  • Chakrabartty A, Kortemme T, Baldwin RL (1994) Helix propensities of the amino-acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci 3(5):843–852

    Article  PubMed  CAS  Google Scholar 

  • Cheng RP, Girinath P, Ahmad R (2007) Effect of lysine side chain length on intra-helical glutamate–lysine ion pairing interactions. Biochemistry 46:10528–10537

    Article  PubMed  CAS  Google Scholar 

  • Cheng RP, Girinath P, Suzuki Y, Kuo H-T, Hsu H-C, Wang W-R, Yang P-A, Gullickson D, Wu C-H, Koyack MJ, Chiu H-P, Weng Y-J, Hart P, Kokona B, Fairman R, Lin T-E, Barrett O (2010) Positional effects on helical Ala-based peptides. Biochemistry 49:9372–9384

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39:1603–1606

    Article  CAS  Google Scholar 

  • Chiu H-P, Cheng RP (2007) Chemoenzymatic synthesis of (S)-hexafluoroleucine and (S)-tetrafluoroleucine. Org Lett 9:5517–5520

    Article  PubMed  CAS  Google Scholar 

  • Chiu HP, Suzuki Y, Gullickson D, Ahmad R, Kokona B, Fairman R, Cheng RP (2006) Helix propensity of highly fluorinated amino acids. J Am Chem Soc 128(49):15556–15557

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13(2):211–222

    Article  PubMed  CAS  Google Scholar 

  • Diss ML, Kennan AJ (2008) Orthogonal recognition in dimeric coiled coils via buried polar-group modulation. J Am Chem Soc 130:1321–1327

    Article  PubMed  CAS  Google Scholar 

  • Doig AJ, Baldwin RL (1995) N- and C-capping preferences for all 20 amino acids in α-helical peptides. Protein Sci 4:1325–1336

    Article  PubMed  CAS  Google Scholar 

  • Doig AJ, Chakrabartty A, Klingler TM, Baldwin RL (1994) Determination of free-energies of N-capping in a-helices by modification of the Lifson–Roig helix-coil theory to include N-capping and C-capping. Biochemistry 33(11):3396–3403

    Article  PubMed  CAS  Google Scholar 

  • Drake B, Patek M, Lebl M (1994) A convenient preparation of monosubstituted N,N’-di(Boc)-protected guanidines. Synthesis:579–582

  • Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins—application to side-chain prediction. J Mol Biol 230(2):543–574

    Article  PubMed  CAS  Google Scholar 

  • Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6(7):1948–1954

    Article  PubMed  CAS  Google Scholar 

  • Edsall JT, Flory PJ, Kendrew JC, Liquori AM, Némethy G, Ramachandran GN, Scheraga HA (1966) A proposal of standard conventions and nomenclature for the description of polypeptide conformations. J Mol Biol 15:399–407

    Article  PubMed  CAS  Google Scholar 

  • Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37(1):36–48

    Google Scholar 

  • Engel DE, De Grado WF (2004) Amino Acid propensities are position-dependent throughout the length of α-helices. J Mol Biol 337:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M (1998a) Triurethane-protected guanidines and triflyldiurethane-protected guanidines: new reagents for guanidinylation reactions. J Org Chem 63:8432–8439

    Article  CAS  Google Scholar 

  • Feichtinger K, Zapf C, Sings HL, Goodman M (1998b) Diprotected triflyguanidines: a new class of guanidinylation reagents. J Org Chem 63:3804–3805

    Article  CAS  Google Scholar 

  • Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Protein Res 35(3):161–214

    Article  PubMed  CAS  Google Scholar 

  • Griep S, Hobohm U (2010) PDBselect 1992–2009 and PDBfilter-select. Nucleic Acids Res 38:D318–D319

    Article  PubMed  CAS  Google Scholar 

  • Gunasekaran K, Nagarajaram HA, Ramakrishnan C, Balaram P (1998) Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals. J Mol Biol 275:917–932

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AKH, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem Int Ed 46:338–352

    Article  CAS  Google Scholar 

  • Ho K-C, Sun C-M (1999) Liquid phase parallel synthesis of guanidines. Bioorg Med Chem Lett 9:1517–1520

    Article  PubMed  CAS  Google Scholar 

  • Hobohm U, Sander C (1994) Enlarged representative set of protein structures. Protein Sci 3(3):522–524

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Ma B, Wolfson H, Nussinov R (2000) Conservation of polar residues as hot spots at protein interfaces. Proteins Struct Funct Genet 39:331–342

    Article  PubMed  CAS  Google Scholar 

  • Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM (1995) Protein–protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol 63:31–65

    Article  PubMed  CAS  Google Scholar 

  • Katritzky AR, Rogovoy BV (2005) Recent developments in guanylating agents. ARKIVOC iv:49–87

    Google Scholar 

  • Klugh HE (1970) Statistics-the essentials for research. In: Statistics-The essentials for research. John Wiley & Sons Inc, New York. pp 350

  • Kuebler RR, Smith H (1976) Statistics-A beginning. In: Statistics-A beginning. John Wiley & Sons, Inc, New York. pp 302

  • Kumar S, Bansal M (1998) Dissecting α-helices: position-specific analysis of α-helices in globular proteins. Proteins Struct Funct Genet 31:460–476

    Article  PubMed  CAS  Google Scholar 

  • Lifson S, Roig A (1961) The theory of helix-coil transition in polypeptides. J Chem Phys 34:1963–1974

    Article  CAS  Google Scholar 

  • McGregor MJ, Islam SA, Sternberg MJE (1987) Analysis of the relationship between side-chain conformation and secondary structure in globular-proteins. J Mol Biol 198(2):295–310

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  PubMed  CAS  Google Scholar 

  • Moroni M, Koksch B, Osipov SN, Crucianelli M, Frigerio M, Bravo P, Burger K (2001) First synthesis of totally orthogonal protected α-(trifluoromethyl)- and α-(difluoromethyl)arginines. J Org Chem 66:130–133

    Article  PubMed  CAS  Google Scholar 

  • Nishikaze T, Takayama M (2006) Cooperative effect of factors governing molecular ion yields in desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 20:376–382

    Article  PubMed  CAS  Google Scholar 

  • Northern TR, Lee J-C, Hoang L, Raymond J, Hwang D-R, Yannone SM, Wong CH, Siuzdak G (2008) A nanostructure-initiator mass spectrometry-based enzyme activity assay. Proc Natl Acad Sci USA 105:3678–3683

    Article  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption-coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan S, Baldwin RL (1991) Straight-chain non-polar amino acids are good helix-formers in water. J Mol Biol 219:135–137

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin Robert L (1990) Relative helix-forming tendencies of nonpolar amino acids. Nature 344:268–270

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan S, York EJ, Stewart JM, Baldwin RL (1996) Helix propensities of basic amino acids increase with the length of the side-chain. J Mol Biol 257(3):726–734

    Article  PubMed  CAS  Google Scholar 

  • Poss MA, Iwanowicz E, Reid JA, Lin J, Gu Z (1992) A mild and efficient method for the preparation of guanidines. Tetrahedron Lett 40:5933–5936

    Article  Google Scholar 

  • Pradhan TK, Joosten A, Vasse J-L, Bertus P, Karoyan P, Szymoniak J (2009) A concise stereoselective synthesis of 2-substituted 1-aminocyclopropanecarboxyllic acids. Eur J Org Chem 5072–5078

  • Presta LG, Rose GD (1988) Helix signals in proteins. Science 240(4859):1632–1641

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Richardson DC (1988) Amino acid preferences for specific locations at the ends of α helices. Science 240:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Robinson S, Roskamp EJ (1997) Solid phase synthesis of guanidines. Tetrahedron 53:6697–6705

    Article  CAS  Google Scholar 

  • Sali D, Bycroft M, Fersht AR (1988) Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature 355:740–743

    Google Scholar 

  • Schneider JP, DeGrado WF (1998) The design of efficient α-helical C-capping auxiliaries. J Am Chem Soc 120:2764–2767

    Article  CAS  Google Scholar 

  • Shey J-Y, Sun C-M (1998) Soluble polymer-supported synthesis of N,N-di(Boc)-protected guanidines. Synlett 1423–1425

  • Shinohara Y, Furukawa J, Niikura K, Miura N, Nishimura S-I (2004) Direct N-glycan profiling in the presence of tryptic peptides on MALDI-TOF by controlled ion enhancement and suppression upon glycan-selective derivatization. Anal Chem 76:6989–6997

    Article  PubMed  CAS  Google Scholar 

  • Tsai C-J, Lin SL, Wolfson HJ, Nussinov R (1997) Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6:53–64

    Article  PubMed  CAS  Google Scholar 

  • Umezawa N, Gelman MA, Haigis MC, Raines RT, Gellman SH (2001) Translocation of a β-peptide across cell membranes. J Am Chem Soc 124:368–369

    Article  Google Scholar 

  • Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA 97: 13003–13008

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Rothbard JB, Jessop TC, Kreider EL, Wylie BL (2002) Oligocarbamate molecular transporters: design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J Am Chem Soc 124:13382–13383

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Galliber WC, Goun EA, Jones JR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Article  PubMed  CAS  Google Scholar 

  • Yong YF, Kowalski JA, Lipton MA (1997) Facile and efficient guanylation of amines using thioureas and Mukaiyama’s reagent. J Org Chem 62:1540–1542

    Article  CAS  Google Scholar 

  • Yong YF, Kowalski JA, Thoen JC, Lipton MA (1999) A new reagent for solid and solution phase synthesis of protected guanidines from amines. Tetrahedron Lett 40:53–56

    Article  CAS  Google Scholar 

  • Zhang Y, Kennan AJ (2001) Efficient introduction of protected guanidines in BOC solid phase peptide synthesis. Org Lett 3:2341–2344

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Kent SBH, Chait BT (1997) Rapid, sensitive structure analysis of oligosaccharides. Proc Natl Acad Sci USA 94:1629–1633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NYSTAR James D. Watson Investigator Program (R.P.C.), Kapoor funds (R.P.C.), The State University of New York at Buffalo (R.P.C.), National Science Foundation (R.P.C., CHE0809633), National Taiwan University (R.P.C.), National Science Council (R.P.C., NSC-97-2113-M-002-019-MY2, NSC-98-2119-M-002-025, NSC-99-2113-M-002-002-MY2; Y.J.W., NSC-98-2815-C-002-056-M). The authors would like to thank the Computer and Information Networking Center at National Taiwan University for the support of the high-performance computing facilities. The authors would like to thank Professor Cheu-Pyeng Cheng (Department of Chemistry, National Tsing Hua University) for helpful discussions, and Ms. Chia-Wen Kuo for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, R.P., Weng, YJ., Wang, WR. et al. Helix formation and capping energetics of arginine analogs with varying side chain length. Amino Acids 43, 195–206 (2012). https://doi.org/10.1007/s00726-011-1064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1064-2

Keywords

Navigation